Advanced Topics in Machine Learning
Part II: An Introduction to Online Learning
A. LAZARIC (INRIA-Lille)

DEI, Politecnico di Milano

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

Outline

Introduction
The Online Prediction Game Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

Outline

Introduction
The Online Prediction Game Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

Online Learning

The prediction problem

- What will be the rain precipitation next month?

Online Learning

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?

Online Learning

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?
- How many iPad will be sold next quarter?

Online Learning

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?
- How many iPad will be sold next quarter?
- How many contacts will have this webpage in the next hour?

Online Learning

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?
- How many iPad will be sold next quarter?
- How many contacts will have this webpage in the next hour?

Online Learning vs Statistical Learning

Limitations of Statistical Learning

- Reality is not stochastic
- Data are often arriving in a sequence
- Training and testing are rarely separated
- Massive datasets must be provided in a stream

Online Learning vs Statistical Learning (cont'd)

	SL	OL
Samples	Batch	In a stream
Assumptions	Stochastic model	Individual sequence
Analysis	Average case	Worst case
Performance	Excess risk	Regret

The Prediction Game

The environment

- Outcome space \mathcal{Y}

The Prediction Game

The environment

- Outcome space \mathcal{Y}

The learner

- Decision (prediction) space \mathcal{D}

The Prediction Game

The environment

- Outcome space \mathcal{Y}

The learner

- Decision (prediction) space \mathcal{D}

The performance

- Loss function $\ell(p, y)$ with $y \in \mathcal{Y}$ and $p \in \mathcal{D}$

The Prediction Game (cont'd)

At each round $t=1, \ldots, n$

The Prediction Game (cont'd)

At each round $t=1, \ldots, n$

- At the same time
- The environment chooses an outcome $y_{t} \in \mathcal{Y}$
- The learner chooses a prediction $\hat{p}_{t} \in \mathcal{D}$

The Prediction Game (cont'd)

At each round $t=1, \ldots, n$

- At the same time
- The environment chooses an outcome $y_{t} \in \mathcal{Y}$
- The learner chooses a prediction $\hat{p}_{t} \in \mathcal{D}$
- The learner suffers a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$

The Prediction Game (cont'd)

At each round $t=1, \ldots, n$

- At the same time
- The environment chooses an outcome $y_{t} \in \mathcal{Y}$
- The learner chooses a prediction $\hat{p}_{t} \in \mathcal{D}$
- The learner suffers a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$
- The environment reveals y_{t}

The Prediction Game (cont'd)

At each round $t=1, \ldots, n$ (not necessarily finite time)

- At the same time
- The environment chooses an outcome $y_{t} \in \mathcal{Y}$
- The learner chooses a prediction $\hat{p}_{t} \in \mathcal{D}$
- The learner suffers a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$
- The environment reveals y_{t}

Outline

Introduction
The Online Prediction Game Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$ How to Make Money with Online Learning \$\$

Conclusions

A "Gentle" Start: Binary Sequence Prediction

Problem: predict (online) the next bit in an arbitrary string of bits

- $\mathcal{Y}=\mathcal{D}=\{0,1\}$
- $\ell(p, y)=\mathbb{I}\{y \neq p\}$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Doubt: I do not know anything about where this string is coming from... and I am not an expert of strings of bits...

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Doubt: I do not know anything about where this string is coming from... and I am not an expert of strings of bits... Solution: ask to experts!

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Doubt: I do not know anything about where this string is coming from... and I am not an expert of strings of bits... Solution: ask to experts!

- N experts
- Each returning a prediction $f_{i, t} \in \mathcal{D}(i=1, \ldots, N)$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Simple case: one of my experts perfectly knows the sequence

$$
\exists i, \forall t, \quad \ell\left(y_{t}, f_{i, t}\right)=0
$$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Simple case: one of my experts perfectly knows the sequence

$$
\exists i, \forall t, \quad \ell\left(y_{t}, f_{i, t}\right)=0
$$

Simple algorithm the Halving algorithm (a.k.a. "there can be only one!"):
Initialize the weights $w_{i, 0}=1$

- Collect all the experts' predictions $f_{i, t}$
- Take $\hat{p}_{t}=1$ if the majority of experts with $w_{i}=1$ suggests 1 , 0 otherwise
- Observe y_{t}
- Set $w_{i}=0$ for all the $f_{i, t} \neq y_{t}$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Question: how many mistakes does this algorithm make?

A "Gentle" Start: Binary Sequence Prediction (cont'd)

 Let W_{m} be the total number of active experts after m mistakes.
A "Gentle" Start: Binary Sequence Prediction (cont'd)

 Let W_{m} be the total number of active experts after m mistakes.- At the beginning $m=0$ and $W_{0}=N$. [algorithm]

A "Gentle" Start: Binary Sequence Prediction (cont'd)

 Let W_{m} be the total number of active experts after m mistakes.- At the beginning $m=0$ and $W_{0}=N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$
W_{m} \leq \frac{W_{m-1}}{2}
$$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

 Let W_{m} be the total number of active experts after m mistakes.- At the beginning $m=0$ and $W_{0}=N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$
W_{m} \leq \frac{W_{m-1}}{2}
$$

- Applying the previous relationship recursively [math]

$$
W_{m} \leq \frac{W_{m-1}}{2} \leq \frac{W_{m-2}}{4} \leq \ldots \leq \frac{W_{0}}{2^{m}}
$$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

 Let W_{m} be the total number of active experts after m mistakes.- At the beginning $m=0$ and $W_{0}=N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$
W_{m} \leq \frac{W_{m-1}}{2}
$$

- Applying the previous relationship recursively [math]

$$
W_{m} \leq \frac{W_{m-1}}{2} \leq \frac{W_{m-2}}{4} \leq \ldots \leq \frac{W_{0}}{2^{m}}
$$

- According to the "simple case", after m there will always at least one expert still active [assumption]

$$
W_{m} \geq 1
$$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

 Let W_{m} be the total number of active experts after m mistakes.- At the beginning $m=0$ and $W_{0}=N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$
W_{m} \leq \frac{W_{m-1}}{2}
$$

- Applying the previous relationship recursively [math]

$$
W_{m} \leq \frac{W_{m-1}}{2} \leq \frac{W_{m-2}}{4} \leq \ldots \leq \frac{W_{0}}{2^{m}}
$$

- According to the "simple case", after m there will always at least one expert still active [assumption]

$$
W_{m} \geq 1
$$

- Putting together [math]

$$
\frac{W_{0}}{2^{m}} \geq 1 \Rightarrow m \leq\left\lfloor\log _{2} N\right\rfloor
$$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Theorem

For any binary sequence $y_{1}, \ldots, y_{t}, \ldots$, we consider a halving algorithm on N experts. If one experts makes no mistake over the sequence, then

$$
m \leq\left\lfloor\log _{2} N\right\rfloor
$$

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Theorem

For any binary sequence $y_{1}, \ldots, y_{t}, \ldots$, we consider a halving algorithm on N experts. If one experts makes no mistake over the sequence, then

$$
m \leq\left\lfloor\log _{2} N\right\rfloor
$$

- No stochastic assumption!
- No high-probability result!
- Finite number of mistakes for ANY possible sequence!

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA
The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA
The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Continuous Prediction

- Outcome space \mathcal{Y} is arbitrary
- Decision space \mathcal{D} is a convex subset of \mathbb{R}^{s}
- Loss function $\ell(p, y)$
- bounded $(\ell: \mathcal{D} \times \mathcal{Y} \rightarrow[0,1])$
- convex in the first argument $(\ell(\cdot, y)$ is convex for any $y \in \mathcal{Y})$

Continuous Prediction (cont'd)

- Experts $f_{1, t}, \ldots, f_{N, t}$
- The performance measure: the (expert) regret

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{1 \leq i \leq N} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

Continuous Prediction (cont'd)

- Experts $f_{1, t}, \ldots, f_{N, t}$
- The performance measure: the (expert) regret

$$
R_{n}=\underbrace{\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)}_{\text {alg. cumul. loss }}-\min _{1 \leq i \leq N} \underbrace{\sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)}_{\text {expert } i \text { cumul. loss }}
$$

Continuous Prediction (cont'd)

- Experts $f_{1, t}, \ldots, f_{N, t}$
- The performance measure: the (expert) regret

$$
R_{n}=\underbrace{\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)}_{\text {alg. cumul. loss }}-\underbrace{\min _{1 \leq i \leq N} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)}_{\text {best expert in hindsight }}
$$

Continuous Prediction (cont'd)

- Expert cumulative loss on the sequence $\mathbf{y}^{n}=\left(y_{1}, \ldots, y_{n}\right)$

$$
L_{i, n}\left(\mathbf{y}^{n}\right)=\sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

- Algorithm \mathcal{A} cumulative loss

$$
L_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right)=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)
$$

- Regret

$$
R_{n}=L_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right)-\min _{i} L_{i, n}\left(\mathbf{y}^{n}\right)
$$

Continuous Prediction (cont'd)

- Expert cumulative loss on the sequence $\mathbf{y}^{n}=\left(y_{1}, \ldots, y_{n}\right)$

$$
L_{i, n}\left(\mathbf{y}^{n}\right)=\sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

- Algorithm \mathcal{A} cumulative loss

$$
L_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right)=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)
$$

- Regret

$$
R_{n}=L_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right)-\min _{i} L_{i, n}\left(\mathbf{y}^{n}\right)
$$

Objective: find an alg. with small regret for any sequence \mathbf{y}^{n}

Continuous Prediction (cont'd)

The definition of expert is so general that almost anything fits:

Continuous Prediction (cont'd)

The definition of expert is so general that almost anything fits:

- $f_{i, t}$ can be a function of a context $x \Rightarrow$ adaptive experts

Continuous Prediction (cont'd)

The definition of expert is so general that almost anything fits:

- $f_{i, t}$ can be a function of a context $x \Rightarrow$ adaptive experts
- $f_{i, t}$ can change over time \Rightarrow learning experts

Continuous Prediction (cont'd)

The definition of expert is so general that almost anything fits:

- $f_{i, t}$ can be a function of a context $x \Rightarrow$ adaptive experts
- $f_{i, t}$ can change over time \Rightarrow learning experts
- $f_{i, t}$ is arbitrary \Rightarrow experts can even form a coalition against the learner

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA
The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$ How to Make Money with Online Learning \$\$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Predict $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{t}=\frac{\sum_{i=1}^{N} w_{i, t-1} f_{i, t}}{W_{t-1}}
$$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Predict $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{t}=\frac{\sum_{i=1}^{N} w_{i, t-1} f_{i, t}}{W_{t-1}}
$$

- Observe y_{t}

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Predict $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{t}=\frac{\sum_{i=1}^{N} w_{i, t-1} f_{i, t}}{W_{t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Predict $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{t}=\frac{\sum_{i=1}^{N} w_{i, t-1} f_{i, t}}{W_{t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$
- Update

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Predict $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{t}=\frac{\sum_{i=1}^{N} w_{i, t-1} f_{i, t}}{W_{t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$
- Update (the weights are the exponential cumulative losses)

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Predict $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{t}=\frac{\sum_{i=1}^{N} w_{i, t-1} f_{i, t}}{W_{t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(\hat{p}_{t}, y_{t}\right)$
- Update (the weights are the exponential cumulative losses)

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

Implement.: store and update the normalized weights $\hat{w}_{i, t}=w_{i, t} / W_{t}$.

The Exponentially Weighted Average Forecaster (cont'd)

Theorem

If \mathcal{D} is a convex decision space and the loss function is bounded and convex in the first argument, then on any sequence \mathbf{y}^{n}, $E W A(\eta)$ satisfies

$$
R_{n}=L_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right)-\min _{i} L_{i, n}\left(\mathbf{y}^{n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8} .
$$

The Exponentially Weighted Average Forecaster (cont'd)

The proof is divided in three steps.
Step 1: a lower bound on the log-ratio of cumulative weights

$$
\log \frac{W_{n+1}}{W_{1}}=\log W_{n+1}-\log W_{1}=\log \left(\sum_{i=1}^{N} w_{i, n+1}\right)-\log N
$$

The Exponentially Weighted Average Forecaster (cont'd)

The proof is divided in three steps.
Step 1: a lower bound on the log-ratio of cumulative weights

$$
\begin{aligned}
\log \frac{W_{n+1}}{W_{1}} & =\log W_{n+1}-\log W_{1}=\log \left(\sum_{i=1}^{N} w_{i, n+1}\right)-\log N \\
& \geq \log \left(\max _{1 \leq i \leq N} w_{i, n+1}\right)-\log N
\end{aligned}
$$

The Exponentially Weighted Average Forecaster (cont'd)

The proof is divided in three steps.
Step 1: a lower bound on the log-ratio of cumulative weights

$$
\begin{aligned}
\log \frac{W_{n+1}}{W_{1}} & =\log W_{n+1}-\log W_{1}=\log \left(\sum_{i=1}^{N} w_{i, n+1}\right)-\log N \\
& \geq \log \left(\max _{1 \leq i \leq N} w_{i, n+1}\right)-\log N \\
& =-\eta \min _{1 \leq i \leq N} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)-\log N
\end{aligned}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 2: an upper bound on the log-ratio of cumulative weights

$$
\log \frac{W_{t+1}}{W_{t}}=\log \left(\sum_{i=1}^{N} \frac{w_{i, t}}{W_{t}} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)\right)
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 2: an upper bound on the log-ratio of cumulative weights

$$
\begin{aligned}
\log \frac{W_{t+1}}{W_{t}} & =\log \left(\sum_{i=1}^{N} \frac{w_{i, t}}{W_{t}} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)\right) \\
& \left.=\log \left(\mathbb{E} \exp \left(-\eta \ell\left(f_{l_{t}, t}, y_{t}\right)\right)\right) \quad \text { (with } \mathbb{P}\left(I_{t}=i\right)=w_{i, t} / W_{t}\right)
\end{aligned}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 2: an upper bound on the log-ratio of cumulative weights

$$
\begin{aligned}
\log \frac{W_{t+1}}{W_{t}} & =\log \left(\sum_{i=1}^{N} \frac{w_{i, t}}{W_{t}} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)\right) \\
& \left.=\log \left(\mathbb{E} \exp \left(-\eta \ell\left(f_{t, t}, y_{t}\right)\right)\right) \quad \text { (with } \mathbb{P}\left(I_{t}=i\right)=w_{i, t} / W_{t}\right) \\
& \leq-\eta \mathbb{E} \ell\left(f_{l, t}, y_{t}\right)+\frac{\eta^{2}}{8} \quad \text { (Hoeffding's lemma) }
\end{aligned}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 2: an upper bound on the log-ratio of cumulative weights

$$
\begin{aligned}
\log \frac{W_{t+1}}{W_{t}} & =\log \left(\sum_{i=1}^{N} \frac{w_{i, t}}{W_{t}} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)\right) \\
& \left.=\log \left(\mathbb{E} \exp \left(-\eta \ell\left(f_{l_{t}, t}, y_{t}\right)\right)\right) \quad \text { (with } \mathbb{P}\left(I_{t}=i\right)=w_{i, t} / W_{t}\right) \\
& \leq-\eta \mathbb{E} \ell\left(f_{l, t}, y_{t}\right)+\frac{\eta^{2}}{8} \quad \text { (Hoeffding's lemma) } \\
& \leq-\eta \ell\left(\mathbb{E} f_{l, t}, y_{t}\right)+\frac{\eta^{2}}{8} \quad \text { (Jensen's inequality) }
\end{aligned}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 2: an upper bound on the log-ratio of cumulative weights

$$
\begin{aligned}
\log \frac{W_{t+1}}{W_{t}} & =\log \left(\sum_{i=1}^{N} \frac{w_{i, t}}{W_{t}} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)\right) \\
& \left.=\log \left(\mathbb{E} \exp \left(-\eta \ell\left(f_{t_{t}, t}, y_{t}\right)\right)\right) \quad \text { (with } \mathbb{P}\left(I_{t}=i\right)=w_{i, t} / W_{t}\right) \\
& \leq-\eta \mathbb{E} \ell\left(f_{l, t}, y_{t}\right)+\frac{\eta^{2}}{8} \quad \text { (Hoeffding's lemma) } \\
& \leq-\eta \ell\left(\mathbb{E} f_{l, t}, y_{t}\right)+\frac{\eta^{2}}{8} \quad \text { (Jensen's inequality) } \\
& =-\eta \ell\left(\hat{p}_{t}, y_{t}\right)+\frac{\eta^{2}}{8}
\end{aligned}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 3: joint upper and lower bounds

Notice that $\log \frac{W_{n+1}}{W_{1}}=\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}}$

The Exponentially Weighted Average Forecaster (cont'd)

Step 3: joint upper and lower bounds

Notice that $\log \frac{W_{n+1}}{W_{1}}=\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}}$

$$
\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 3: joint upper and lower bounds

Notice that $\log \frac{W_{n+1}}{W_{1}}=\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}}$

$$
\begin{gathered}
\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} \\
-\min _{1 \leq i \leq N} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)-\log N \leq \sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} \leq \sum_{t=1}^{n}\left(-\eta \ell\left(\hat{p}_{t}, y_{t}\right)+\frac{\eta^{2}}{8}\right)
\end{gathered}
$$

The Exponentially Weighted Average Forecaster (cont'd)

Step 3: joint upper and lower bounds

Notice that $\log \frac{W_{n+1}}{W_{1}}=\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}}$

$$
\begin{gathered}
\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} \\
-\eta \min _{1 \leq i \leq N} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)-\log N \leq \sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} \leq \sum_{t=1}^{n}\left(-\eta \ell\left(\hat{p}_{t}, y_{t}\right)+\frac{\eta^{2}}{8}\right) \\
-\eta \min _{1 \leq i \leq N} L_{i, n}-\log N \leq-\eta L_{n}(\mathcal{A})+\frac{n \eta^{2}}{8}
\end{gathered}
$$

The statement follows by reordering the terms.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA
The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Parameter Tuning

Tuning: how should we tune the parameter η ?

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

Parameter Tuning

Tuning: how should we tune the parameter η ?

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

- $\operatorname{Big} \eta=$ aggressive algorithm: converge fast to one expert but it could be wrong

Parameter Tuning

Tuning: how should we tune the parameter η ?

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

- $\operatorname{Big} \eta=$ aggressive algorithm: converge fast to one expert but it could be wrong
- Small $\eta=$ conservative algorithm: does not converge to the wrong expert but it could take a long time

Parameter Tuning (cont'd)

Tuning: how should we tune the parameter η ?

$$
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

Parameter Tuning (cont'd)

Tuning: how should we tune the parameter η ?

$$
\begin{gathered}
w_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right) \\
R_{n}(E W A) \leq \underbrace{\frac{\log N}{\eta}}_{\text {big! }}+\underbrace{\frac{\eta n}{8}}_{\text {small! }}
\end{gathered}
$$

Parameter Tuning (cont'd)

Tuning: If we know the horizon n, then by setting $\eta=\sqrt{\frac{8 \log N}{n}}$

Parameter Tuning (cont'd)

Tuning: If we know the horizon n, then by setting $\eta=\sqrt{\frac{8 \log N}{n}}$

$$
R_{n}(E W A) \leq \sqrt{\frac{n}{2} \log N}
$$

Parameter Tuning (cont'd)

Tuning: If we know the horizon n, then by setting $\eta=\sqrt{\frac{8 \log N}{n}}$

$$
R_{n}(E W A) \leq \sqrt{\frac{n}{2} \log N}
$$

- Logarithmic dependency on N
\Rightarrow add many experts, no problem!

Parameter Tuning (cont'd)

Tuning: If we know the horizon n, then by setting $\eta=\sqrt{\frac{8 \log N}{n}}$

$$
R_{n}(E W A) \leq \sqrt{\frac{n}{2} \log N}
$$

- Logarithmic dependency on N
\Rightarrow add many experts, no problem!
- Per-step regret $R_{n} / n=\sqrt{1 / n} \rightarrow 0$

Parameter Tuning (cont'd)

Tuning: If we know the horizon n, then by setting $\eta=\sqrt{\frac{8 \log N}{n}}$

$$
R_{n}(E W A) \leq \sqrt{\frac{n}{2} \log N}
$$

- Logarithmic dependency on N \Rightarrow add many experts, no problem!
- Per-step regret $R_{n} / n=\sqrt{1 / n} \rightarrow 0$
\Rightarrow EWA is asymptotically as good as the best expert!

Parameter Tuning (cont'd)

Problem: Sometimes n is unknown (or it does not exist at all)

Parameter Tuning (cont'd)

Problem: Sometimes n is unknown (or it does not exist at all) Solution: set $\eta_{t}=2 \sqrt{\frac{\log N}{t}}$ and

$$
R_{n}(E W A) \leq \sqrt{n \log N}
$$

A Comparison with SLT results

Bound for batch binary classification with N hypotheses on data i.i.d. from \mathcal{P}

$$
R(\hat{h} ; \mathcal{P})-R\left(h^{*} ; \mathcal{P}\right) \leq O\left(\sqrt{\frac{\log N / \delta}{n}}\right)
$$

if the observations are i.i.d. from a stationary distribution \mathcal{P}

A Comparison with SLT results

Bound for batch binary classification with N hypotheses on data i.i.d. from \mathcal{P}

$$
n\left(R(\hat{h} ; \mathcal{P})-\min _{h \in \mathcal{H}} R(h ; \mathcal{P})\right) \leq O(\sqrt{n \log N / \delta})
$$

if the observations are i.i.d. from a stationary distribution \mathcal{P}

A Comparison with SLT results

Bound for batch binary classification with N hypotheses on data i.i.d. from \mathcal{P}

$$
n\left(\mathbb{E}_{x, y}[\ell(\hat{h}(x), y)]-\min _{h \in \mathcal{H}} \mathbb{E}_{x, y}[\ell(h(x), y)]\right) \leq O(\sqrt{n \log N / \delta})
$$

if the observations are i.i.d. from a stationary distribution \mathcal{P}

A Comparison with SLT results

Bound for batch binary classification with N hypotheses on data i.i.d. from \mathcal{P}

$$
\left.\mathbb{E}_{x, y}[n \ell(\hat{h}(x), y)]-\min _{h \in \mathcal{H}} \mathbb{E}_{x, y}[n \ell(h(x), y)]\right) \leq O(\sqrt{n \log N / \delta})
$$

if the observations are i.i.d. from a stationary distribution \mathcal{P}

A Comparison with SLT results

Bound for batch binary classification with N hypotheses on data i.i.d. from \mathcal{P}

$$
\left.\mathbb{E}_{x, y}[n \ell(\hat{h}(x), y)]-\min _{h \in \mathcal{H}} \mathbb{E}_{x, y}[n \ell(h(x), y)]\right) \leq O(\sqrt{n \log N / \delta})
$$

if the observations are i.i.d. from a stationary distribution \mathcal{P}
Bound for online binary classification with N experts on any sequence \mathbf{y}^{n}

$$
\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{i} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right) \leq \sqrt{n \log N}
$$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA
The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

An Alternative Bound (for Small Losses)

Question: What if the best expert is really good? (i.e., $L_{n}^{*}=\min _{i} L_{i, n}$ is small)

An Alternative Bound (for Small Losses) (cont'd)

Theorem

If \mathcal{D} is a convex decision space and the loss function is bounded and convex in the first argument. Let $L_{n}^{*}=\min _{i} L_{i, n}$, then on any sequence $\mathbf{y}^{n}, E W A(\eta)$ satisfies

$$
L_{n}(\mathcal{A}) \leq \frac{\eta L_{n}^{*}+\log N}{1-\exp ^{-\eta}}
$$

An Alternative Bound (for Small Losses) (cont'd)

$$
\begin{aligned}
& \text { Corollary } \\
& \text { If } \eta=1 \text { (aggressive algorithm) } \\
& \qquad L_{n}(\mathcal{A}) \leq \frac{e}{e-1}\left(L_{n}^{*}+\log N\right)=L_{n}^{*}+\frac{1}{e-1} L_{n}^{*}+\frac{e}{e-1} \log N
\end{aligned}
$$

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If $\eta=1$ (aggressive algorithm)

$$
L_{n}(\mathcal{A}) \leq \frac{e}{e-1}\left(L_{n}^{*}+\log N\right)=L_{n}^{*}+\frac{1}{e-1} L_{n}^{*}+\frac{e}{e-1} \log N
$$

- If L_{n}^{*} is small (i.e., $L_{n}^{*} \ll \sqrt{n}$) it is much better than the previous bound

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If $\eta=1$ (aggressive algorithm)

$$
L_{n}(\mathcal{A}) \leq \frac{e}{e-1}\left(L_{n}^{*}+\log N\right)=L_{n}^{*}+\frac{1}{e-1} L_{n}^{*}+\frac{e}{e-1} \log N
$$

- If L_{n}^{*} is small (i.e., $L_{n}^{*} \ll \sqrt{n}$) it is much better than the previous bound
- If L_{n}^{*} is not small (i.e., $L_{n}^{*}>\sqrt{n}$) it is much worse than the previous bound

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If $\eta=1$ (aggressive algorithm)

$$
L_{n}(\mathcal{A}) \leq \frac{e}{e-1}\left(L_{n}^{*}+\log N\right)=L_{n}^{*}+\frac{1}{e-1} L_{n}^{*}+\frac{e}{e-1} \log N
$$

- If L_{n}^{*} is small (i.e., $L_{n}^{*} \ll \sqrt{n}$) it is much better than the previous bound
- If L_{n}^{*} is not small (i.e., $L_{n}^{*}>\sqrt{n}$) it is much worse than the previous bound
- If $L_{n}^{*}=0$ we have (almost) the same performance as the Halving algorithm

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If we optimally tune $\eta=\log \left(1+\sqrt{(2 \log N) / L_{n}^{*}}\right)$

$$
L_{n}(\mathcal{A}) \leq L_{n}^{*}+\sqrt{2 L_{n}^{*} \log N}+\log N
$$

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If we optimally tune $\eta=\log \left(1+\sqrt{(2 \log N) / L_{n}^{*}}\right)$

$$
L_{n}(\mathcal{A}) \leq L_{n}^{*}+\sqrt{2 L_{n}^{*} \log N}+\log N
$$

Problem: the performance of the best expert is usually not known...

Algorithm adapting to the complexity of the problem?

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If we optimally tune $\eta=\log \left(1+\sqrt{(2 \log N) / L_{n}^{*}}\right)$

$$
L_{n}(\mathcal{A}) \leq L_{n}^{*}+\sqrt{2 L_{n}^{*} \log N}+\log N
$$

Problem: the performance of the best expert is usually not known...

Algorithm adapting to the complexity of the problem?

Almost... (see NIPS this year)

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA
The Discrete Prediction Game
A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts
\$ How to Make Money with Online Learning \$\$

Conclusions

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

Discrete Prediction

- Outcome space \mathcal{Y} is discrete (with $|Y| \geq 2$)
- Decision space $\mathcal{D}=\mathcal{Y}$
- Loss function $\ell(p, y)=\mathbb{I}\{p \neq y\}$

Discrete Prediction (cont'd)

- Experts $f_{1, t}, \ldots, f_{N, t}$
- The performance measure: the (expert) regret

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{1 \leq i \leq N} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

Discrete Prediction (cont'd)

Remark: everything is almost the same as in the continuous prediction, so it should be easy!

Discrete Prediction (cont'd)

Remark: everything is almost the same as in the continuous prediction, so it should be easy! No

Discrete Prediction (cont'd)

Example: Two experts: $f_{1, t}=0$ and $f_{2, t}=1$ at any t, then

Discrete Prediction (cont'd)

Example: Two experts: $f_{1, t}=0$ and $f_{2, t}=1$ at any t, then

- For any sequence $\mathbf{y}^{n}=\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}$, there exists an experts i such that

$$
L_{i, n}=\sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right) \geq n / 2
$$

Discrete Prediction (cont'd)

Example: Two experts: $f_{1, t}=0$ and $f_{2, t}=1$ at any t, then

- For any sequence $\mathbf{y}^{n}=\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}$, there exists an experts i such that

$$
L_{i, n}=\sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right) \geq n / 2
$$

- For any algorithm \mathcal{A}, there exists a sequence $\mathbf{y}^{n}(\mathcal{A})$ such that

$$
L_{n}(\mathcal{A})=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}(\mathcal{A})\right)=n
$$

Discrete Prediction (cont'd)

Let's (adversarially) construct the sequence $\mathbf{y}^{n}(\mathcal{A})$.

- At time 1 , the adversary sets $y_{1}(\mathcal{A})=1-\hat{p}_{1}$ (for a fixed algorithm \mathcal{A} this is always possible)

Discrete Prediction (cont'd)

Let's (adversarially) construct the sequence $\boldsymbol{y}^{n}(\mathcal{A})$.

- At time 1 , the adversary sets $y_{1}(\mathcal{A})=1-\hat{p}_{1}$ (for a fixed algorithm \mathcal{A} this is always possible)
- At time t, the algorithm chooses \hat{p}_{t} on the basis of $\left(y_{1}(\mathcal{A}), \ldots, y_{t-1}(\mathcal{A})\right)$ (in a predictable way)

Discrete Prediction (cont'd)

Let's (adversarially) construct the sequence $\mathbf{y}^{n}(\mathcal{A})$.

- At time 1 , the adversary sets $y_{1}(\mathcal{A})=1-\hat{p}_{1}$ (for a fixed algorithm \mathcal{A} this is always possible)
- At time t, the algorithm chooses \hat{p}_{t} on the basis of $\left(y_{1}(\mathcal{A}), \ldots, y_{t-1}(\mathcal{A})\right)$ (in a predictable way)
- At time t, the adversary sets $y_{t}(\mathcal{A})=1-\hat{p}_{t}$

Discrete Prediction (cont'd)

Theorem

In the discrete prediction problem, for any deterministic algorithm \mathcal{A}, the worst case regret is

$$
R_{n}(\mathcal{A}) \geq \frac{n}{2}
$$

Discrete Prediction (cont'd)

Theorem

In the discrete prediction problem, for any deterministic algorithm \mathcal{A}, the worst case regret is

$$
R_{n}(\mathcal{A}) \geq \frac{n}{2}
$$

Discrete Prediction (cont'd)

Theorem

In the discrete prediction problem, for any deterministic algorithm
\mathcal{A}, the worst case regret is

$$
R_{n}(\mathcal{A}) \geq \frac{n}{2}
$$

Solution: let's randomize!

Discrete Prediction (cont'd)

Problem: how do we randomize over experts without loosing in performance?

Discrete Prediction (cont'd)

Problem: how do we randomize over experts without loosing in performance?
Solution: use the Exponentially Weighted Average forecaster!

Discrete Prediction (cont'd)

We first construct a fictitious continuous prediction problem where we can apply the EWA:

- $\mathcal{D}^{\prime}=\left\{p \in[0,1]^{N}: \sum_{i=1}^{N} p_{i}=1\right\} \Rightarrow$ convex

Discrete Prediction (cont'd)

We first construct a fictitious continuous prediction problem where we can apply the EWA:

- $\mathcal{D}^{\prime}=\left\{p \in[0,1]^{N}: \sum_{i=1}^{N} p_{i}=1\right\} \Rightarrow$ convex
- $Y^{\prime}=Y \times \mathcal{D}^{N}$

Discrete Prediction (cont'd)

We first construct a fictitious continuous prediction problem where we can apply the EWA:

- $\mathcal{D}^{\prime}=\left\{p \in[0,1]^{N}: \sum_{i=1}^{N} p_{i}=1\right\} \Rightarrow$ convex
- $Y^{\prime}=Y \times \mathcal{D}^{N}$
- $\ell^{\prime}\left(p,\left(y, f_{1}, \ldots, f_{N}\right)\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right) \Rightarrow$ convex and bounded

Discrete Prediction (cont'd)

We first construct a fictitious continuous prediction problem where we can apply the EWA:

- $\mathcal{D}^{\prime}=\left\{p \in[0,1]^{N}: \sum_{i=1}^{N} p_{i}=1\right\} \Rightarrow$ convex
- $Y^{\prime}=Y \times \mathcal{D}^{N}$
- $\ell^{\prime}\left(p,\left(y, f_{1}, \ldots, f_{N}\right)\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right) \Rightarrow$ convex and bounded
- $f_{i, t}^{\prime}=e_{i}$, with $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{\top}$ with i-th coordinate equal to 1

Discrete Prediction (cont'd)

We first construct a fictitious continuous prediction problem where we can apply the EWA:

- $\mathcal{D}^{\prime}=\left\{p \in[0,1]^{N}: \sum_{i=1}^{N} p_{i}=1\right\} \Rightarrow$ convex
- $Y^{\prime}=Y \times \mathcal{D}^{N}$
- $\ell^{\prime}\left(p,\left(y, f_{1}, \ldots, f_{N}\right)\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right) \Rightarrow$ convex and bounded
- $f_{i, t}^{\prime}=e_{i}$, with $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{\top}$ with i-th coordinate equal to 1
- $y_{t}^{\prime}=\left(y_{t}, f_{1, t}, \ldots, f_{N, t}\right)$

Discrete Prediction (cont'd)

We notice that

$$
\ell^{\prime}\left(f_{i, t}^{\prime}, y_{t}^{\prime}\right)=\ell^{\prime}\left(e_{i},\left(y_{t}, f_{1, t}, \ldots, f_{N, t}\right)\right)=\ell\left(f_{i, t}, y_{t}\right)
$$

Thus

$$
L_{i, t}=\sum_{s=1}^{t} \ell\left(f_{i, s}, y_{s}\right)=\sum_{s=1}^{t} \ell^{\prime}\left(f_{i, s}^{\prime}, y_{s}^{\prime}\right)
$$

Discrete Prediction (cont'd)

At each round t of the fictitious continuos problem the algorithm returns

$$
\hat{p}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)
$$

Discrete Prediction (cont'd)

At each round t of the fictitious continuos problem the algorithm returns

$$
\hat{p}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)
$$

At each round t of the real discrete problem the algorithm returns (at random)

$$
I_{t} \sim \hat{p}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)
$$

Discrete Prediction (cont'd)

At each round t of the fictitious continuos problem the algorithm returns

$$
\hat{p}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)
$$

At each round t of the real discrete problem the algorithm returns (at random)

$$
I_{t} \sim \hat{p}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)
$$

and in expectation

$$
\mathbb{E}\left[\ell\left(f_{l_{t}}, y_{t}\right)\right]=\sum_{t=1}^{N} \hat{p}_{i, t} \ell\left(f_{i, t}, y_{t}\right)=\ell^{\prime}\left(\hat{p}_{t},\left(y_{t}, f_{1, t}, \ldots, f_{N, t}\right)\right)=\ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)
$$

Discrete Prediction (cont'd)

The performance is

$$
L_{n}^{\prime}(\mathcal{A})=\sum_{t=1}^{n} \ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)=\mathbb{E}\left[\sum_{t=1}^{n} \ell\left(f_{t}, t, y_{t}\right)\right]=\mathbb{E}\left[L_{n}(\mathcal{A})\right]
$$

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell\left(f_{i}, y\right)$	$\ell^{\prime}\left(p, y^{\prime}\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right)$	
$\ell\left(f_{i, t}, y_{t}\right)$	$\ell^{\prime}\left(f_{i, t}^{\prime}, y_{t}^{\prime}\right)$	
$\mathbb{E}\left[\ell\left(f_{l_{t}}, y_{t}\right)\right]$	$\ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)$	
$\mathbb{E}\left[L_{n}(\mathcal{A})\right]$	$L_{n}^{\prime}(\mathcal{A})$	

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell\left(f_{i}, y\right)$	$\ell^{\prime}\left(p, y^{\prime}\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right)$	
$\ell\left(f_{i, t}, y_{t}\right)$	$\ell^{\prime}\left(f_{i, t}^{\prime}, y_{t}^{\prime}\right)$	cumulative losses coincide
$\mathbb{E}\left[\ell\left(f_{l_{t}}, y_{t}\right)\right]$	$\ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)$	
$\mathbb{E}\left[L_{n}(\mathcal{A})\right]$	$L_{n}^{\prime}(\mathcal{A})$	

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell\left(f_{i}, y\right)$	$\ell^{\prime}\left(p, y^{\prime}\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right)$	
$\ell\left(f_{i, t}, y_{t}\right)$	$\ell^{\prime}\left(f_{i, t}^{\prime}, y_{t}^{\prime}\right)$	cumulative losses coincide
$\mathbb{E}\left[\ell\left(f_{l_{t}}, y_{t}\right)\right]$	$\ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)$	coincide in expectation
$\mathbb{E}\left[L_{n}(\mathcal{A})\right]$	$L_{n}^{\prime}(\mathcal{A})$	

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell\left(f_{i}, y\right)$	$\ell^{\prime}\left(p, y^{\prime}\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right)$	
$\ell\left(f_{i, t}, y_{t}\right)$	$\ell^{\prime}\left(f_{i, t}^{\prime}, y_{t}^{\prime}\right)$	cumulative losses coincide
$\mathbb{E}\left[\ell\left(f_{I_{t}}, y_{t}\right)\right]$	$\ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)$	coincide in expectation
$\mathbb{E}\left[L_{n}(\mathcal{A})\right]$	$L_{n}^{\prime}(\mathcal{A})$	coincide in expectation

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell\left(f_{i}, y\right)$	$\ell^{\prime}\left(p, y^{\prime}\right)=\sum_{i=1}^{N} p_{i} \ell\left(f_{i}, y\right)$	
$\ell\left(f_{i, t}, y_{t}\right)$	$\ell^{\prime}\left(f_{i, t}^{\prime}, y_{t}^{\prime}\right)$	cumulative losses coincide
$\mathbb{E}\left[\ell\left(f_{I_{t}}, y_{t}\right)\right]$	$\ell^{\prime}\left(\hat{p}_{t}, y_{t}^{\prime}\right)$	coincide in expectation
$\mathbb{E}\left[L_{n}(\mathcal{A})\right]$	$L_{n}^{\prime}(\mathcal{A})$	coincide in expectation

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}^{\prime} is a convex decision space and the loss function ℓ^{\prime} is bounded and convex in the first argument, then on any sequence $\mathbf{y}^{\prime n}$, $E W A(\eta)$ satisfies

$$
R_{n}^{\prime}=L_{n}^{\prime}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)-\min _{i} L_{i, n}^{\prime}\left(\mathbf{y}^{\prime n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8}
$$

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}^{\prime} is a convex decision space and the loss function ℓ^{\prime} is bounded and convex in the first argument, then on any sequence $\mathbf{y}^{\prime n}$, $E W A(\eta)$ satisfies

$$
R_{n}^{\prime}=L_{n}^{\prime}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8}
$$

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}^{\prime} is a convex decision space and the loss function ℓ^{\prime} is bounded and convex in the first argument, then on any sequence $\mathbf{y}^{\prime n}$, $E W A(\eta)$ satisfies

$$
R_{n}^{\prime}=\mathbb{E}\left[L_{n}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)\right]-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8}
$$

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}^{\prime} is a convex decision space and the loss function ℓ^{\prime} is bounded and convex in the first argument, then on any sequence $\mathbf{y}^{\prime n}$, $E W A(\eta)$ satisfies

$$
\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)\right]-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8}
$$

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}^{\prime} is a convex decision space and the loss function ℓ^{\prime} is bounded and convex in the first argument, then on any sequence $\mathbf{y}^{\prime n}$, $E W A(\eta)$ satisfies

Discrete Prediction (cont'd)

Theorem

If \mathcal{D} is a is a discrete space and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}, E W A(\eta)$ satisfies

Discrete Prediction (cont'd)

Theorem

If $\mathcal{D}=\mathcal{Y}$ are discrete spaces and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, the randomized $E W A(\eta)$ satisfies

$$
\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)\right]-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8} .
$$

and

$$
\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)\right]-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \sqrt{\frac{n}{2} \log N}
$$

if η is properly tuned.

Discrete Prediction (cont'd)

Theorem

If $\mathcal{D}=\mathcal{Y}$ are discrete spaces and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, the randomized $E W A(\eta)$ satisfies

$$
\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)\right]-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \frac{\log N}{\eta}+\frac{\eta n}{8}
$$

and

$$
\mathbb{E}\left[R_{n}\right]=\mathbb{E}\left[L_{n}\left(\mathcal{A} ; \mathbf{y}^{\prime n}\right)\right]-\min _{i} L_{i, n}\left(\mathbf{y}^{\prime n}\right) \leq \sqrt{\frac{n}{2} \log N}
$$

if η is properly tuned.
Problem: interesting but this holds only on average, does it mean that from time to time the algorithm can perform arbitrarily bad?

Discrete Prediction (cont'd)

Solution: do you remember the Chernoff-Hoeffding bound?

$$
\mathbb{P}\left[\sum_{t=1}^{n} X_{t}-\sum_{t=1}^{n} \mathbb{E}\left[X_{t}\right]>\varepsilon\right] \leq \exp \left(-2 \varepsilon^{2} / n\right)
$$

Discrete Prediction (cont'd)

Solution: do you remember the Chernoff-Hoeffding bound?

$$
\begin{aligned}
& \mathbb{P}\left[\sum_{t=1}^{n} X_{t}-\sum_{t=1}^{n} \mathbb{E}\left[X_{t}\right]>\varepsilon\right] \leq \exp \left(-2 \varepsilon^{2} / n\right) \\
\Rightarrow & \\
& \mathbb{P}\left[\sum_{t=1}^{n} \ell\left(f_{l_{t}, t}, y_{t}\right)-\sum_{t=1}^{n} \mathbb{E}\left[\ell\left(f_{t, t}, y_{t}\right)\right]>\varepsilon\right] \leq \exp \left(-2 \varepsilon^{2} / n\right)
\end{aligned}
$$

Discrete Prediction (cont'd)

Solution: do you remember the Chernoff-Hoeffding bound?

$$
\begin{array}{ll}
& \mathbb{P}\left[\sum_{t=1}^{n} X_{t}-\sum_{t=1}^{n} \mathbb{E}\left[X_{t}\right]>\varepsilon\right] \leq \exp \left(-2 \varepsilon^{2} / n\right) \\
\Rightarrow & \mathbb{P}\left[\sum_{t=1}^{n} \ell\left(f_{l_{t}, t}, y_{t}\right)-\sum_{t=1}^{n} \mathbb{E}\left[\ell\left(f_{t, t}, y_{t}\right)\right]>\varepsilon\right] \leq \exp \left(-2 \varepsilon^{2} / n\right) \\
\Rightarrow \quad & \mathbb{P}\left[L_{n}(\mathcal{A})-\mathbb{E}\left[L_{n}(\mathcal{A})\right]>\varepsilon\right] \leq \exp \left(-2 \varepsilon^{2} / n\right)
\end{array}
$$

Discrete Prediction (cont'd)

Theorem

If $\mathcal{D}=\mathcal{Y}$ are discrete spaces and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, the randomized $E W A(\eta)$ satisfies

$$
R_{n}=L_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right)-\min _{i} L_{i, n}\left(\mathbf{y}^{n}\right) \leq \sqrt{\frac{n}{2} \log N}+\sqrt{\frac{n}{2} \log \frac{1}{\delta}}
$$

with probability $1-\delta$.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

Lower Bounds

Question: EWA (η) seems good but I am sure that my algorithm can do better!

Lower Bounds

Question: EWA (η) seems good but I am sure that my algorithm can do better!

Answer: don't even try... EWA is the best possible algorithm! Informally:

$$
\inf _{\mathcal{A}} \sup _{\mathbf{y}^{n}} R_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right) \geq \sqrt{\frac{n}{2} \log N}
$$

Lower Bounds

Question: EWA (η) seems good but I am sure that my algorithm can do better!

Answer: don't even try... EWA is the best possible algorithm! Informally:

$$
\inf _{\mathcal{A}} \sup _{\mathbf{y}^{n}} R_{n}\left(\mathcal{A} ; \mathbf{y}^{n}\right) \geq \sqrt{\frac{n}{2} \log N}
$$

for some losses...

Lower Bounds (cont'd)

Lower Bounds (cont'd)

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$

Lower Bounds (cont'd)

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$
- Mixable: optimal regret c $\log N$ but not (always) achieved EWA

Lower Bounds (cont'd)

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$
- Mixable: optimal regret c $\log N$ but not (always) achieved EWA
- Exp-concave: EWA is optimal with regret $c \log N$

Lower Bounds (cont'd)

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$
- Mixable: optimal regret c $\log N$ but not (always) achieved EWA
- Exp-concave: EWA is optimal with regret $c \log N$
- Non-convex: EWA is optimal in discrete prediction

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
Tracking the Best Expert
Tree Experts
Shortest Path Problem
Infinite Experts
\$\$ How to Make Money with Online Learning \$\$

Ćnría lusions

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
Tracking the Best Expert
Tree Experts
Shortest Path Problem
Infinite Experts
\$\$ How to Make Money with Online Learning \$\$

Ćnría lusions

A Remark on the Regret

$$
R_{n}=L_{n}(\mathcal{A})-\min _{i} L_{i, n}
$$

A Remark on the Regret

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{i} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

A Remark on the Regret

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{i} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

Remark: algorithm competes against the best fixed expert

A Remark on the Regret

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{i} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

Remark: algorithm competes against the best fixed expert Problem: what if the good expert changes over time?

A Remark on the Regret (cont'd)

Question: why do not design an algorithm to compete against the best changing expert?

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\min _{i} \sum_{t=1}^{n} \ell\left(f_{i, t}, y_{t}\right)
$$

A Remark on the Regret (cont'd)

Question: why do not design an algorithm to compete against the best changing expert?

$$
R_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)-\sum_{t=1}^{n} \min _{i} \ell\left(f_{i, t}, y_{t}\right)
$$

Switching Experts

A switching compound expert σ is

$$
\sigma \in\{1, \ldots, N\}^{n}
$$

Switching Experts

A switching compound expert σ is

$$
\sigma \in\{1, \ldots, N\}^{n}
$$

At each round t it chooses expert σ_{t} and cumulate a loss

$$
L_{\sigma, n}=\sum_{t=1}^{n} \ell\left(f_{\sigma_{t}, t}, y_{t}\right)
$$

Switching Experts

A switching compound expert σ is

$$
\sigma \in\{1, \ldots, N\}^{n}
$$

At each round t it chooses expert σ_{t} and cumulate a loss

$$
L_{\sigma, n}=\sum_{t=1}^{n} \ell\left(f_{\sigma_{t}, t}, y_{t}\right)
$$

Class of switching experts $B \subseteq\{1, \ldots, N\}^{n}$ We refer to the others as base experts.

Switching Experts (cont'd)

Problem: At each round t the learner takes the action suggested by the switching expert $\hat{\sigma}_{t}$, thus cumulating

$$
L_{n}(\mathcal{A})=\sum_{t=1}^{n} \ell\left(f_{\hat{\sigma}_{t}, t}, y_{t}\right)
$$

Switching Experts (cont'd)

Problem: At each round t the learner takes the action suggested by the switching expert $\hat{\sigma}_{t}$, thus cumulating

$$
L_{n}(\mathcal{A})=\sum_{t=1}^{n} \ell\left(f_{\hat{\sigma}_{t}, t}, y_{t}\right)
$$

The regret of \mathcal{A} w.r.t. switching experts in B is

$$
R_{n}=L_{n}(\mathcal{A})-\min _{i} L_{i, n}
$$

Switching Experts (cont'd)

Problem: At each round t the learner takes the action suggested by the switching expert $\hat{\sigma}_{t}$, thus cumulating

$$
L_{n}(\mathcal{A})=\sum_{t=1}^{n} \ell\left(f_{\hat{\sigma}_{t}, t}, y_{t}\right)
$$

The regret of \mathcal{A} w.r.t. switching experts in B is

$$
R_{n}=L_{n}(\mathcal{A})-\min _{\sigma \in B} L_{\sigma, n}
$$

Switching Experts (cont'd)

Problem: At each round t the learner takes the action suggested by the switching expert $\hat{\sigma}_{t}$, thus cumulating

$$
L_{n}(\mathcal{A})=\sum_{t=1}^{n} \ell\left(f_{\hat{\sigma}_{t}, t}, y_{t}\right)
$$

The regret of \mathcal{A} w.r.t. switching experts in B is

$$
R_{n}=L_{n}(\mathcal{A})-\min _{\sigma \in B} L_{\sigma, n}
$$

Solution: use the EWA on the set of meta-experts B !

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA (η) run on the class B of switching experts achieves (with a suitable choice of η)

$$
R_{n}=L_{n}(\mathcal{A})-\min _{\sigma \in B} L_{\sigma, n} \leq \sqrt{\frac{n}{2} \log |B|}
$$

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA (η) run on the class B of switching experts achieves (with a suitable choice of η)

$$
R_{n}=L_{n}(\mathcal{A})-\min _{\sigma \in B} L_{\sigma, n} \leq \sqrt{\frac{n}{2} \log |B|}
$$

Problem: if $B=\{1, \ldots, N\}^{n}$ then $|B|=N^{n}$ and

$$
R_{n} \leq \sqrt{\frac{n}{2} \log |B|}=O(n)
$$

\Rightarrow sad facts of life... we cannot compete against the sequence of best experts

Switching Experts (cont'd)

Question: what if we limit the number of switches of the switching experts to m ?

$$
s(\sigma)=\sum_{t=1}^{n} \mathbb{I}\left\{\sigma_{t-1} \neq \sigma_{t}\right\}
$$

Switching Experts (cont'd)

Question: what if we limit the number of switches of the switching experts to m ?

$$
\begin{aligned}
s(\sigma) & =\sum_{t=1}^{n} \mathbb{I}\left\{\sigma_{t-1} \neq \sigma_{t}\right\} \\
B_{n, m} & =\{\sigma \mid s(\sigma) \leq m\}
\end{aligned}
$$

Switching Experts (cont'd)

Question: what if we limit the number of switches of the switching experts to m ?

$$
\begin{aligned}
s(\sigma) & =\sum_{t=1}^{n} \mathbb{I}\left\{\sigma_{t-1} \neq \sigma_{t}\right\} \\
B_{n, m} & =\{\sigma \mid s(\sigma) \leq m\}
\end{aligned}
$$

$$
\left|B_{n, m}\right|=\sum_{k=0}^{m}\binom{n-1}{k} N(N-1)^{k} \leq N^{m+1} \exp \left((n-1) H\left(\frac{m}{n-1}\right)\right)
$$

with $H(x)=-x \log x-(1-x) \log (1-x)$ is the binary entropy function.

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n, m}$ of switching experts achieves (with a suitable choice of η)

$$
R_{n} \leq \sqrt{\frac{n}{2}\left((m+1) \log N+(n-1) H\left(\frac{m}{n-1}\right)\right)}
$$

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n, m}$ of switching experts achieves (with a suitable choice of η)

$$
R_{n} \leq \sqrt{\frac{n}{2}\left((m+1) \log N+(n-1) H\left(\frac{m}{n-1}\right)\right)}
$$

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n, m}$ of switching experts achieves (with a suitable choice of η)

$$
R_{n} \leq \sqrt{\frac{n}{2}\left((m+1) \log N+(n-1) H\left(\frac{m}{n-1}\right)\right)}
$$

Problem: not bad, but the EWA should maintain and update $\left|B_{n, m}\right|$ weights... unfeasible!

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n, m}$ of switching experts achieves (with a suitable choice of η)

$$
R_{n} \leq \sqrt{\frac{n}{2}\left((m+1) \log N+(n-1) H\left(\frac{m}{n-1}\right)\right)}
$$

Problem: not bad, but the EWA should maintain and update $\left|B_{n, m}\right|$ weights... unfeasible!
Objective: an efficient EWA algorithm which maintains as many weights as the N base experts

The Fixed-Share Forecaster

Initialize the weights $w_{i, 0}=1 / \mathrm{N}$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$

The Fixed-Share Forecaster

Initialize the weights $w_{i, 0}=1 / \mathrm{N}$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Randomize according to

$$
I_{t} \sim \hat{p}_{i, t}=\frac{w_{i, t-1} f_{i, t}}{\sum_{j=1}^{N} w_{j, t-1}}
$$

The Fixed-Share Forecaster

Initialize the weights $w_{i, 0}=1 / \mathrm{N}$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Randomize according to
- Observe y_{t}

$$
I_{t} \sim \hat{p}_{i, t}=\frac{w_{i, t-1} f_{i, t}}{\sum_{j=1}^{N} w_{j, t-1}}
$$

The Fixed-Share Forecaster

Initialize the weights $w_{i, 0}=1 / \mathrm{N}$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Randomize according to

$$
I_{t} \sim \hat{p}_{i, t}=\frac{w_{i, t-1} f_{i, t}}{\sum_{j=1}^{N} w_{j, t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(f_{t, t}, y_{t}\right)$

The Fixed-Share Forecaster

Initialize the weights $w_{i, 0}=1 / \mathrm{N}$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Randomize according to

$$
I_{t} \sim \hat{p}_{i, t}=\frac{w_{i, t-1} f_{i, t}}{\sum_{j=1}^{N} w_{j, t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(f_{t, t}, y_{t}\right)$
- Compute

$$
v_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

The Fixed-Share Forecaster

Initialize the weights $w_{i, 0}=1 / \mathrm{N}$

- Collect experts' predictions $f_{1, t}, \ldots, f_{N, t}$
- Randomize according to

$$
I_{t} \sim \hat{p}_{i, t}=\frac{w_{i, t-1} f_{i, t}}{\sum_{j=1}^{N} w_{j, t-1}}
$$

- Observe y_{t}
- Suffer a loss $\ell\left(f_{t}, t, y_{t}\right)$
- Compute

$$
v_{i, t}=w_{i, t-1} \exp \left(-\eta \ell\left(f_{i, t}, y_{t}\right)\right)
$$

- Update (with $W_{t}=\sum_{i} v_{i, t}$)

$$
w_{i, t}=\alpha \frac{W_{t}}{N}+(1-\alpha) v_{i, t}
$$

The Fixed-Share Forecaster (cont'd)

Intuition: α encodes a belief on the switching frequency

$$
w_{i, t}=\alpha \frac{W_{t}}{N}+(1-\alpha) v_{i, t}
$$

The Fixed-Share Forecaster (cont'd)

Details: everything starts from a non-uniform belief over the class B of all the possible switching strategies $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

$$
w_{0}^{\prime}(\sigma)=\frac{1}{N}\left(\frac{\alpha}{N}\right)^{s(\sigma)}\left(1-\alpha+\frac{\alpha}{N}\right)^{n-s(\sigma)}
$$

The Fixed-Share Forecaster (cont'd)

Details: everything starts from a non-uniform belief over the class B of all the possible switching strategies $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

$$
w_{0}^{\prime}(\sigma)=\frac{1}{N}\left(\frac{\alpha}{N}\right)^{s(\sigma)}\left(1-\alpha+\frac{\alpha}{N}\right)^{n-s(\sigma)}
$$

Marginalized weights

$$
w_{0}^{\prime}\left(\sigma_{1: t}\right)=\sum_{\sigma^{\prime} \in B: \sigma_{1: t}^{\prime}=\sigma_{1: t}} w_{0}^{\prime}\left(\sigma^{\prime}\right)
$$

The Fixed-Share Forecaster (cont'd)

Details: everything starts from a non-uniform belief over the class B of all the possible switching strategies $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$

$$
w_{0}^{\prime}(\sigma)=\frac{1}{N}\left(\frac{\alpha}{N}\right)^{s(\sigma)}\left(1-\alpha+\frac{\alpha}{N}\right)^{n-s(\sigma)}
$$

Marginalized weights

$$
w_{0}^{\prime}\left(\sigma_{1: t}\right)=\sum_{\sigma^{\prime} \in B: \sigma_{1: t}^{\prime}=\sigma_{1: t}} w_{0}^{\prime}\left(\sigma^{\prime}\right)
$$

Recursive forumlation

$$
\begin{gathered}
w_{0}^{\prime}\left(\sigma_{1}\right)=1 / N \\
w_{0}^{\prime}\left(\sigma_{1: t+1}\right)=w_{0}^{\prime}\left(\sigma_{1: t}\right)\left(\frac{\alpha}{N}+(1-\alpha) \mathbb{I}\left\{\sigma_{t+1}=\sigma_{t}\right\}\right)
\end{gathered}
$$

The Fixed-Share Forecaster (cont'd)

The value

$$
p=\frac{w_{0}^{\prime}\left(\sigma_{1: t+1}\right)}{w_{0}^{\prime}\left(\sigma_{1: t}\right)}=\frac{\alpha}{N}+(1-\alpha) \mathbb{I}\left\{\sigma_{t+1}=\sigma_{t}\right\}
$$

is the conditional probability that a random sequence $\left(I_{1}, \ldots, I_{n}\right)$ drawn from w_{0}^{\prime} has $I_{t+1}=\sigma_{t+1}$ given that $I_{t}=\sigma_{t}$

The Fixed-Share Forecaster (cont'd)

The value

$$
p=\frac{w_{0}^{\prime}\left(\sigma_{1: t+1}\right)}{w_{0}^{\prime}\left(\sigma_{1: t}\right)}=\frac{\alpha}{N}+(1-\alpha) \mathbb{I}\left\{\sigma_{t+1}=\sigma_{t}\right\}
$$

is the conditional probability that a random sequence $\left(I_{1}, \ldots, I_{n}\right)$ drawn from w_{0}^{\prime} has $I_{t+1}=\sigma_{t+1}$ given that $I_{t}=\sigma_{t}$

Let $X=\{1, \ldots, N\}$ be the state of a Markov chain M

- $\mathbb{P}\left[X_{1}=i\right]=w_{0}^{\prime}\left(i_{1}\right)=1 / N$
- $\mathbb{P}\left[X_{t+1}=i \mid X_{t}=j\right]=\alpha / N($ if $i \neq j)$
- $\mathbb{P}\left[X_{t+1}=i \mid X_{t}=i\right]=1-\alpha+\alpha / N$
\Rightarrow The weights w_{0}^{\prime} encode a joint distribution of a Markov chain M such that X_{1} is drawn uniformly at random and X_{t+1} is equal to the previous expert X_{t} with probability $1-\alpha+\alpha / N$ and is equal to $j \neq X_{t}$ with probability α / N.

The Fixed-Share Forecaster (cont'd)

The value

$$
p=\frac{w_{0}^{\prime}\left(\sigma_{1: t+1}\right)}{w_{0}^{\prime}\left(\sigma_{1: t}\right)}=\frac{\alpha}{N}+(1-\alpha) \mathbb{I}\left\{\sigma_{t+1}=\sigma_{t}\right\}
$$

is the conditional probability that a random sequence $\left(I_{1}, \ldots, I_{n}\right)$ drawn from w_{0}^{\prime} has $I_{t+1}=\sigma_{t+1}$ given that $I_{t}=\sigma_{t}$

Let $X=\{1, \ldots, N\}$ be the state of a Markov chain M

- $\mathbb{P}\left[X_{1}=i\right]=w_{0}^{\prime}\left(i_{1}\right)=1 / N$
- $\mathbb{P}\left[X_{t+1}=i \mid X_{t}=j\right]=\alpha / N($ if $i \neq j)$
- $\mathbb{P}\left[X_{t+1}=i \mid X_{t}=i\right]=1-\alpha+\alpha / N$
\Rightarrow small α corresponds to small weight to switching experts with many switches

The Fixed-Share Forecaster (cont'd)

At round t, the weight

$$
w_{t}^{\prime}(\sigma)=w_{0}^{\prime}(\sigma) \exp \left(\eta \sum_{s=1}^{t} \ell\left(f_{\sigma_{s}, t}, y_{s}\right)\right)
$$

is used to randomized over switching experts which reduces to a randomization over base expert

$$
w_{i, t}^{\prime}=\sum_{\sigma \in B: \sigma_{t}=i} w_{t}^{\prime}(\sigma)
$$

with $w_{i, t}^{\prime}=1 / N$.

The Fixed-Share Forecaster (cont'd)

Theorem

The Fixed-Share Forecaster with parameters η, α has a regret w.r.t. any switching expert σ

$$
R_{n}(\mathcal{A}) \leq \frac{s(\sigma)+1}{\eta} \log N+\frac{1}{\eta} \log \frac{1}{(\alpha / N)^{s(\sigma)}(1-\alpha)^{n-s(\sigma)-1}}+\frac{\eta}{8} n
$$

The Fixed-Share Forecaster (cont'd)

Corollary

The Fixed-Share Forecaster with a suitable parameter η and $\alpha=m /(n-1)$ has a regret w.r.t. any switching expert σ with $s(\sigma) \leq m$

$$
R_{n}(\mathcal{A}) \leq \sqrt{\frac{8}{n}\left((m+1) \log N+(n-1) H\left(\frac{m}{n-1}\right)\right)}
$$

The Fixed-Share Forecaster (cont'd)

Corollary

The Fixed-Share Forecaster with a suitable parameter η and $\alpha=m /(n-1)$ has a regret w.r.t. any switching expert σ with $s(\sigma) \leq m$

$$
R_{n}(\mathcal{A}) \leq \sqrt{\frac{8}{n}\left((m+1) \log N+(n-1) H\left(\frac{m}{n-1}\right)\right)}
$$

Remark: α encodes the frequency of switch and it allows the algorithm to compete against $m \approx \alpha n$ switching experts.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
Tracking the Best Expert
Tree Experts
Shortest Path Problem
Infinite Experts
\$\$ How to Make Money with Online Learning \$\$

Ćnría lusions

Tree Experts

Instead of switching experts we now consider tree experts.

Tree Experts

Instead of switching experts we now consider tree experts.
Let's consider the discrete binary prediction case $\mathcal{Y}=\{0,1\}$.

Tree Experts (cont'd)

A binary tree

Tree Experts (cont'd)

An expert tree

Tree Experts (cont'd)

We traverse the tree according to the past observations (in reversed order)

$$
\left(y_{t-1}, y_{t-2}, \ldots, y_{t-d}\right)
$$

See example on the board...

Tree Experts (cont'd)

An expert tree E has

- Number of leaves leaves (E)
- Number of nodes $\|E\|$
- D-size of an expert $\|E\|_{D}=\|E\|-\mid\{$ leaves at depth $D\} \mid$

Tree Experts (cont'd)

Inefficient EWA algorithm over experts

- Initial weights

$$
w_{E, 0}=2^{-\|E\|_{D}} N^{-\| \operatorname{leaves}(E) \mid}
$$

Tree Experts (cont'd)

Inefficient EWA algorithm over experts

- Initial weights

$$
w_{E, 0}=2^{-\|E\|_{D}} N^{-|\operatorname{leaves}(E)|}
$$

- At round t

$$
w_{E, t-1}=w_{E, 0} \prod_{v \in \operatorname{leaves}(E)} w_{E, v, t-1}
$$

Tree Experts (cont'd)

Inefficient EWA algorithm over experts

- Initial weights

$$
w_{E, 0}=2^{-\|E\|_{D}} N^{-\| \operatorname{leaves}(E) \mid}
$$

- At round t

$$
w_{E, t-1}=w_{E, 0} \prod_{v \in \operatorname{leaves}(E)} w_{E, v, t-1}
$$

$$
w_{E, v, t}= \begin{cases}w_{E, v, t-1} \exp \left(-\eta \ell\left(f_{i_{E}(v), t}, y_{t}\right)\right) & \text { if } v \text { is active } \\ w_{E, v, t-1} & \text { otherwise }\end{cases}
$$

Tree Experts (cont'd)

Inefficient EWA algorithm over experts

- Initial weights

$$
w_{E, 0}=2^{-\|E\|_{D}} N^{-\| \operatorname{leaves}(E) \mid}
$$

- At round t

$$
w_{E, t-1}=w_{E, 0} \prod_{v \in \operatorname{leaves}(E)} w_{E, v, t-1}
$$

- Leaf weight

$$
w_{E, v, t}= \begin{cases}w_{E, v, t-1} \exp \left(-\eta \ell\left(f_{i_{E}(v), t}, y_{t}\right)\right) & \text { if } v \text { is active } \\ w_{E, v, t-1} & \text { otherwise }\end{cases}
$$

- Randomize over

$$
p_{i, t}=\frac{\sum_{E} \mathbb{I}\left\{i_{E}\left(\mathbf{y}^{t}\right)=i\right\} w_{E, t-1}}{\sum_{E^{\prime}} w_{E^{\prime}, t-1}}
$$

Tree Experts (cont'd)

Theorem

The randomized EWA (η) over the set of experts of depth D satisfies for any tree expert E

$$
R_{n} \leq \frac{\|E\|_{D}}{\eta} \log 2+\frac{\mid \text { leaves }(E) \mid}{\eta} \log N+\frac{\eta}{8} n
$$

if η is optimized

$$
R_{n} \leq \sqrt{n 2^{D-1} \log (2 N)}
$$

Tree Experts (cont'd)

Theorem

The randomized EWA (η) over the set of experts of depth D satisfies for any tree expert E

$$
R_{n} \leq \frac{\|E\|_{D}}{\eta} \log 2+\frac{\mid \text { leaves }(E) \mid}{\eta} \log N+\frac{\eta}{8} n
$$

if η is optimized

$$
R_{n} \leq \sqrt{n 2^{D-1} \log (2 N)}
$$

Problem: again, the number of experts of D maybe very large and the number of leaves even larger, so this algorithm is infeasible

Tree Experts (cont'd)

There exists an efficient tree expert forecaster with $N\left(2^{D+1}-1\right)$ weights, which is N weights for each node of the complete binary tree of depth D.

No details here but the algorithm involves a recursive update of the weights of the nodes.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
Tracking the Best Expert
Tree Experts
Shortest Path Problem
Infinite Experts
\$\$ How to Make Money with Online Learning \$\$

Ćnría lusions

Directed Acyclic Graphs

Directed Acyclic Graphs

u

Directed Acyclic Graphs (cont'd)

A directed acyclic graph is

- set of edges $E=\left\{e_{1}, \ldots, e_{|E|}\right\}$
- set of vertices V
$\Rightarrow \quad \Rightarrow=\left(v_{1}, v_{2}\right)$

Paths

- Start vertex u, end vertex v
- Path from u to v is $e^{(1)}, \ldots, e^{(k)}$ with $e^{(1)}=\left(u, v_{1}\right)$, $e^{(j)}=\left(v_{j-1}, v_{j}\right)$
- Path $\mathbf{i} \in\{0,1\}^{|E|}$

Directed Acyclic Graphs (cont'd)

At each round t

- each edge e_{j} has a loss $\ell_{e_{j}, t}$
- the whole graph has $y_{t}=\ell_{t} \in[0,1]^{|E|}$
- the loss of a path \mathbf{i} is $\ell\left(\mathbf{i}, y_{t}\right)=\mathbf{i} \cdot \ell_{t}=\sum_{j} \ell_{e_{j}, t} \mathbb{I}\left\{i_{j}=1\right\}$

Directed Acyclic Graphs (cont'd)

At each round t

- each edge e_{j} has a loss $\ell_{e_{j}, t}$
- the whole graph has $y_{t}=\ell_{t} \in[0,1]^{|E|}$
- the loss of a path \mathbf{i} is $\ell\left(\mathbf{i}, y_{t}\right)=\mathbf{i} \cdot \ell_{t}=\sum_{j} \ell_{e_{j}, t} \mathbb{I}\left\{i_{j}=1\right\}$

Regret

$$
R_{n}(\mathcal{A})=\sum_{t=1}^{n} \mathbb{E}\left[\ell\left(\mathbf{I}_{t}, Y_{t}\right)\right]-\min _{\mathbf{i}} \sum_{t=1}^{n} \ell\left(\mathbf{i}_{t}, Y_{t}\right)
$$

Follow the Perturbed Leader

At round t the leader is

Follow the Perturbed Leader

At round t the leader is

$$
\underset{\mathbf{i}}{\arg \min } \mathbf{i} \cdot\left(\sum_{s=1}^{t-1} \ell_{s}\right)
$$

Let $\mathbf{Z}_{t} \in \mathbb{R}^{|E|}$ be a random variable.
The perturbed leader is

$$
I_{t}=\underset{\mathbf{i}}{\arg \min \mathbf{i}} \cdot\left(\sum_{s=1}^{t-1} \ell_{s}+Z_{t}\right)
$$

Follow the Perturbed Leader (cont'd)

The perturbed leader is

$$
I_{t}=\underset{\mathbf{i}}{\arg \min \mathbf{i}} \cdot\left(\sum_{s=1}^{t-1} \ell_{s}+Z_{t}\right)
$$

There exist efficient algorithms to find the shortest path in a directed acyclic graph in linear time.

Follow the Perturbed Leader (cont'd)

Theorem

Consider the follow-the-perturbed-leader with noise vectors $Z_{t} \in[0, \Delta]^{|E|}$. Then with probability $1-\delta$

$$
R_{n} \leq K \Delta+\frac{n K|E|}{\Delta}+K \sqrt{\frac{n}{2} \log \frac{1}{\delta}}
$$

with K the length of the longest path from u to v. By setting $\Delta=\sqrt{n|E|}$ we have

$$
R_{n} \leq 2 K \sqrt{n|E|}+K \sqrt{n / 2 \log (1 / \delta)}
$$

Exponentially Weighted Average for Graphs

Infeasible solution: simply list all the possible paths and consider them as experts
Efficient solution: build the predicted path \mathbf{I}_{t} by selecting edges one by one

Exponentially Weighted Average for Graphs

Edge cumulative loss

$$
L_{e, t}=\sum_{s=1}^{t} \ell_{e, s}
$$

Let \mathcal{P}_{w} the set of paths from vertex $w \in V$ to end vertex v, we define

$$
G_{t}(w)=\sum_{\mathbf{i} \in \mathcal{P}_{w}} \exp \left(-\eta \sum_{e \in \mathbf{i}} L_{e, t}\right)
$$

Exponentially Weighted Average for Graphs

We order the vertices as $v_{1}, \ldots, v_{|V|}$ so that

$$
u=v_{1}, v=v_{|V|}
$$

and if $i<j$ then there is no edge between v_{i} and v_{j} (exploiting the structure of the directed acyclic graph).

Exponentially Weighted Average for Graphs

Given the ordering, we can computed $G_{t}(w)$ recursively

$$
G_{t}(v)=1
$$

If $G_{t}\left(v_{i}\right)$ has been calculated for all v_{i} with
$i=|V|,|V-1|, \ldots, j+1$, then

$$
G_{t}\left(v_{j}\right)=\sum_{w:\left(v_{j}, w\right) \in E} G_{t}(w) \exp \left(-\eta L_{\left(v_{j}, w\right), t}\right)
$$

Exponentially Weighted Average for Graphs

From the weights on the edge to the (random) path \mathbf{I}_{t}. Start from u, then for any $k=1, \ldots$

- Pick the vertex $v_{l_{t}, k}$ with probability

$$
\begin{aligned}
& \mathbb{P}\left[v_{\mathbf{I}_{t}, k}=v_{\mathbf{i}, k} \mid v_{\mathbf{I}_{t}, k-1}=v_{\mathbf{i}, k-1}, \ldots, v_{\mathbf{l}_{t}, 0}=v_{\mathbf{i}, 0}\right] \\
& \\
& = \begin{cases}\frac{G_{t-1}\left(v_{i, k}\right)}{G_{t-1}\left(v_{\mathbf{i}, k-1}\right)} & \text { if }\left(v_{\mathbf{i}, k-1}, v_{\mathbf{i}, j}\right) \in E \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Exponentially Weighted Average for Graphs

Theorem

The efficient EWA achieves a regret

$$
R_{n} \leq K\left(\frac{\log M}{\eta}+\frac{n \eta}{8}+\sqrt{\frac{n}{2} \log \frac{1}{\delta}}\right)
$$

with probability $1-\delta$, where M is the total number of paths from u to v and K is the length of the longest path.

Exponentially Weighted Average for Graphs

Theorem

The efficient EWA achieves a regret

$$
R_{n} \leq K\left(\frac{\log M}{\eta}+\frac{n \eta}{8}+\sqrt{\frac{n}{2} \log \frac{1}{\delta}}\right)
$$

with probability $1-\delta$, where M is the total number of paths from u to v and K is the length of the longest path.

Comparison: the performance is much better than the perturbed leader $(O(\sqrt{n|E|}))$.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
Tracking the Best Expert
Tree Experts
Shortest Path Problem
Infinite Experts
\$\$ How to Make Money with Online Learning \$\$

Inría lusions

Infinite Experts: Sequential Investment

Problem: the bounds displays a nice dependency $\log N$, but what if the number of experts is infinite?

Infinite Experts: Sequential Investment (cont'd)

An example in sequential investment (portfolio selection)

- d stocks
- market vector $z \in \mathbb{R}_{+}^{d}$
- portfolio allocation $a \in \Delta^{d}$ (i.e., $a_{i} \in[0,1]$ and $\sum_{i=1}^{d} a_{i}=1$)
- the capital W evolves as

$$
W_{t}=\sum_{i=1}^{d} \underbrace{a_{t}(i) W_{t-1}}_{\text {fraction on stock } i} z_{t}(i)=W_{t-1} a_{t}^{\top} z_{t}=W_{0} \prod_{s=1}^{t} a_{s}^{\top} z_{s}
$$

Infinite Experts: Sequential Investment (cont'd)

The prediction game

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_{n}(a)=W_{0} \prod_{t=1}^{n} a^{\top} z_{t}$
- Best expert $\sup _{a \in \Delta^{d}} W_{n}(a)$
- Performance of \mathcal{A} (sequence of portfolios a_{1}, \ldots, a_{n}):

$$
\text { Competitive wealth ratio: } \frac{\sup _{a} W_{n}(a)}{W_{n}(\mathcal{A})}
$$

Infinite Experts: Sequential Investment (cont'd)

The prediction game

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_{n}(a)=W_{0} \prod_{t=1}^{n} a^{\top} z_{t}$
- Best expert $\sup _{a \in \Delta^{d}} W_{n}(a)$
- Performance of \mathcal{A} (sequence of portfolios a_{1}, \ldots, a_{n}):

$$
\text { Log wealth ratio: } \log \left(\frac{\sup _{a} W_{n}(a)}{W_{n}(\mathcal{A})}\right)
$$

Infinite Experts: Sequential Investment (cont'd)

The prediction game

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_{n}(a)=W_{0} \prod_{t=1}^{n} a^{\top} z_{t}$
- Best expert $\sup _{a \in \Delta^{d}} W_{n}(a)$
- Performance of \mathcal{A} (sequence of portfolios a_{1}, \ldots, a_{n}):

Log wealth ratio: $\sum_{t=1}^{n}-\log \left(a_{t}^{\top} z_{t}\right)-\inf _{a \in \Delta^{d}} \sum_{t=1}^{n}-\log \left(a^{\top} z_{t}\right)$

Infinite Experts: Sequential Investment (cont'd)

The prediction game

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_{n}(a)=W_{0} \prod_{t=1}^{n} a^{\top} z_{t}$
- Best expert $\sup _{a \in \Delta^{d}} W_{n}(a)$
- Performance of \mathcal{A} (sequence of portfolios a_{1}, \ldots, a_{n}):

$$
\text { Regret: } \sum_{t=1}^{n} \ell\left(a_{t}, z_{t}\right)-\inf _{a \in \Delta^{d}} \sum_{t=1}^{n} \ell\left(a, z_{t}\right)
$$

Infinite Experts: Sequential Investment (cont'd)

Continuous EWA (η)
At each round t, switch to position

$$
a_{t}=\int_{a \in \Delta^{d}} \frac{w_{t}(a)}{W_{t}} a d a
$$

with

$$
w_{t}(a)=\exp \left(-\eta \sum_{s=1}^{t-1} \ell\left(a, z_{s}\right)\right), \quad W_{t}=\int_{a} w_{t}(a) d a
$$

Infinite Experts: Sequential Investment (cont'd)

Problem: the portfolio selection

$$
a_{t}=\int_{a \in \Delta^{d}} \frac{w_{t}(a)}{W_{t}} a d a
$$

is easy to write but how easy is it to compute?

Infinite Experts: Sequential Investment (cont'd)

Problem: the portfolio selection

$$
a_{t}=\int_{a \in \Delta^{d}} \frac{w_{t}(a)}{W_{t}} a d a
$$

is easy to write but how easy is it to compute?
Easy! (or at least not too much complicated...)

Infinite Experts: Sequential Investment (cont'd)

Remark: notice that

$$
a_{t}=\int_{a \in \Delta^{d}} \frac{w_{t}(a)}{W_{t}} a d a
$$

is an integration problem with a measure $w_{t}(a) / W_{t}$ and that

$$
f_{t}(a): a \mapsto \frac{w_{t}(a)}{W_{t}}=\frac{1}{W_{t}} \exp \left(-\eta \sum_{s=1}^{t-1} \ell\left(a, z_{s}\right)\right)
$$

is a log-concave function and Δ_{d} is a convex set

Infinite Experts: Sequential Investment (cont'd)

Remark: notice that

$$
a_{t}=\int_{a \in \Delta^{d}} \frac{w_{t}(a)}{W_{t}} a d a
$$

is an integration problem with a measure $w_{t}(a) / W_{t}$ and that

$$
f_{t}(a): a \mapsto \frac{w_{t}(a)}{W_{t}}=\frac{1}{W_{t}} \exp \left(-\eta \sum_{s=1}^{t-1} \ell\left(a, z_{s}\right)\right)
$$

is a log-concave function and Δ_{d} is a convex set
\Rightarrow we can use random walk methods which are particularly efficient

Infinite Experts: Sequential Investment (cont'd)

A sketch of the algorithm
Input: m, σ
Average over m samples obtained as

- Start from a uniform allocation $a_{0}=(1 / d, \ldots, 1 / d)$
- Repeat for T steps
- Choose a dimension j (i.e., a stock) at random
- Choose a value $X \in\{-1,1\}$ at random
- Compute $p_{1}=f(a)$
- Compute $p_{2}=f(a(1), \ldots, a(j)+X \sigma, \ldots, a(d)-X \sigma)$
- With probability p_{1} / p_{2} update $a(j)=a(j)+\sigma X$ and $a(d)=a(d)-\sigma X$

Infinite Experts: Sequential Investment (cont'd)

Theorem

If

$$
\begin{aligned}
& m \geq O\left(\frac{n^{3}}{\epsilon^{2}} \log \frac{d n}{\delta}\right) \\
& S \geq O\left(\frac{d}{\sigma^{2}} \log \frac{d}{\epsilon \sigma}\right)
\end{aligned}
$$

then random walk algorithm performs $(1-\epsilon)$ times as well as the exact algorithm with probability $1-\delta$.

Extension to Infinite Experts

Theorem

Given a convex loss bounded in $[0,1]$, for any $\gamma>0$, the (exact) Continuous EWA(η) achieves a regret

$$
R_{n} \leq \frac{d \log \frac{1}{\gamma}}{\eta}+\frac{n \eta}{8}+\gamma n
$$

By setting $\gamma=1 / n$ and $\eta=2 \sqrt{2 d \log n / n}$ then

$$
R_{n} \leq 1+\sqrt{\frac{d n \log n}{2}}
$$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

The Betting Problem

Disclaimer

Neither the authors nor the lecturer are responsible for any inappropriate use of the techniques presented in this course.

The Betting Problem

The problem: Predict the outcome of a game using the odds from the bookmakers.

Glossary

- Bookmaker (bookie): The company organizing the gambling
- Odds: Bookmaker's view of the chance of a competitor winning (adjusted to include a profit).
- Stake: The money you bet.
- Overround: Profit margin in the bookmaker's favor.

Glossary (cont'd)

Theoretical (in favor) odds

- Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?

Glossary (cont'd)

Theoretical (in favor) odds

- Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?
Answer: 2/13 (2:13)

Glossary (cont'd)

Theoretical (in favor) odds

- Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?
Answer: 2/13 (2:13)
- Definition:

$$
\text { odd }=\frac{\text { prob. in favor }}{\text { prob. against }}
$$

Source: wikipedia

Glossary (cont'd)

Theoretical (in favor) odds

- Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?
Answer: 2/13 (2:13)
- Definition:

$$
a=\frac{p}{1-p}
$$

Source: wikipedia

Glossary (cont'd)

Theoretical (in favor) odds

- Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?
Answer: 2/13 (2:13)
- Definition:

$$
a=\frac{p}{1-p}
$$

If $p=0.2$, the odds are $a=0.25$, and represent the stake necessary to win one unit (plus the bet) on a successful wager when offered fair odds.

- Odds $a=0.25$ correspond to fractional odds are 4 to 1 (4:1), in decimal odds are 5.0.

Source: wikipedia

Glossary (cont'd)

Theoretical (against) odds

$$
a=\frac{1-p}{p}
$$

Glossary (cont'd)

Theoretical (against) odds

$$
a=\frac{1-p}{p}
$$

In the previous example: What are the odds against picking one blue marble? 13:2

Glossary (cont'd)

Gambling odds

- Bookmaker's odds include a profit margin, the over-round.
- Example: In a 3 -horse race, let $50 \%, 40 \%$ and 10% be the true probabilities (odds 5-5, 6-4 and 9-1). The bookmaker may increase the values to $60 \%, 50 \%$ and 20% (odds $4-6,5-5$ and 4-1). These values total 130, meaning that the book has an overround of 30 .

Glossary (cont'd)

From odds to probabilities:

- K possible outcomes
- K odds a_{1}, \ldots, a_{K}
- Probabilities

$$
p_{k}=\frac{1 / a_{k}}{\sum_{k^{\prime}=1}^{K} 1 / a_{k^{\prime}}}
$$

The Brier's Game

- Outcome space: possible results
- Decision space: probability distribution
- Set of experts: bookmakers
- Loss function: quadratic loss on the probability distribution

The Brier's Game

- Outcome space: $\mathcal{Y}=\{1, \ldots, K\}$
- Decision space: $\mathcal{D}=\mathbb{P}(\mathcal{Y})$
- Set of experts: $1, \ldots, N$
- Loss function:

$$
\ell(y, \hat{\mathbf{p}})=\sum_{k=1}^{K}\left(\hat{p}(k)-\delta_{y}(k)\right)^{2}
$$

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes $\mathbf{p}_{i, t}$

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes $\mathbf{p}_{i, t}$
- Learner predicts a distribution over outcomes $\hat{\mathbf{p}}_{t}$

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes $\mathbf{p}_{i, t}$
- Learner predicts a distribution over outcomes $\hat{\mathbf{p}}_{t}$
- Reality announces the outcome y_{t}

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes $\mathbf{p}_{i, t}$
- Learner predicts a distribution over outcomes $\hat{\mathbf{p}}_{t}$
- Reality announces the outcome y_{t}
- Learner incurs a loss $\ell\left(y_{t}, \hat{\mathbf{p}}_{t}\right)$

Strong Aggregating Algorithm

Initialize the weights $w_{i, 0}=1$

- Record the experts' predictions $\mathbf{p}_{i, t}$

Strong Aggregating Algorithm

Initialize the weights $w_{i, 0}=1$

- Record the experts' predictions $\mathbf{p}_{i, t}$
- Compute

$$
G_{t}(y)=-\log \left(\sum_{i=1}^{N} w_{i, t-1} \exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)\right)
$$

Strong Aggregating Algorithm

Initialize the weights $w_{i, 0}=1$

- Record the experts' predictions $\mathbf{p}_{i, t}$
- Compute

$$
G_{t}(y)=-\log \left(\sum_{i=1}^{N} w_{i, t-1} \exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)\right)
$$

- Solve $\sum_{y}\left(s-G_{t}(y)\right)^{+}=2$ with $s \in \mathbb{R}$

Strong Aggregating Algorithm

Initialize the weights $w_{i, 0}=1$

- Record the experts' predictions $\mathbf{p}_{i, t}$
- Compute

$$
G_{t}(y)=-\log \left(\sum_{i=1}^{N} w_{i, t-1} \exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)\right)
$$

- Solve $\sum_{y}\left(s-G_{t}(y)\right)^{+}=2$ with $s \in \mathbb{R}$
- Set $\hat{p}_{t}(k)=\left(s-G_{t}(k)\right)^{+} / 2$ for any $k \in \mathcal{Y}$

Strong Aggregating Algorithm

Initialize the weights $w_{i, 0}=1$

- Record the experts' predictions $\mathbf{p}_{i, t}$
- Compute

$$
G_{t}(y)=-\log \left(\sum_{i=1}^{N} w_{i, t-1} \exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)\right)
$$

- Solve $\sum_{y}\left(s-G_{t}(y)\right)^{+}=2$ with $s \in \mathbb{R}$
- Set $\hat{p}_{t}(k)=\left(s-G_{t}(k)\right)^{+} / 2$ for any $k \in \mathcal{Y}$
- Predict $\hat{\mathbf{p}}_{t}$ and observe y_{t}

Strong Aggregating Algorithm

Initialize the weights $w_{i, 0}=1$

- Record the experts' predictions $\mathbf{p}_{i, t}$
- Compute

$$
G_{t}(y)=-\log \left(\sum_{i=1}^{N} w_{i, t-1} \exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)\right)
$$

- Solve $\sum_{y}\left(s-G_{t}(y)\right)^{+}=2$ with $s \in \mathbb{R}$
- Set $\hat{p}_{t}(k)=\left(s-G_{t}(k)\right)^{+} / 2$ for any $k \in \mathcal{Y}$
- Predict $\hat{\mathbf{p}}_{t}$ and observe y_{t}
- Update $w_{i, t}=w_{i, t-1} \exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)$

Strong Aggregating Algorithm

A rough explanation

- $\exp \left(-\ell\left(y, \mathbf{p}_{i, t}\right)\right)$ is the "loss" suffered by i if the outcome will be y
- $G_{t}(y)$ is a mixing function of the the potential losses using weights ws
- We search for a mapping function Σ which takes G and returns valid predictions such that

$$
\ell(y, \Sigma(G)) \leq G(y)
$$

Strong Aggregating Algorithm

Theorem

The strong aggregating algorithm on the Brier's game achieves a cumulative loss

$$
L_{n}(\mathcal{A}) \leq \min _{1 \leq i \leq N} L_{i, n}+\log N
$$

Strong Aggregating Algorithm

Theorem

The strong aggregating algorithm on the Brier's game achieves a cumulative loss

$$
L_{n}(\mathcal{A}) \leq \min _{1 \leq i \leq N} L_{i, n}+\log N
$$

Remark: and no algorithm can do better!

Empirical Results

Available at: http://vovk.net/ICML2008/

Empirical Results

Available at: http://vovk.net/ICML2008/
Database football

- 8999 matches in English football competitions over 4 years
- Outcomes: \{home win, draw, away win\}
- 8 Bookmakers (Bet365, Bet\&Win, ...)

Empirical Results

Available at: http://vovk.net/ICML2008/
Database football

- 8999 matches in English football competitions over 4 years
- Outcomes: \{home win, draw, away win\}
- 8 Bookmakers (Bet365, Bet\&Win, ...)

Database tennis

- 10,087 matches in different tournaments over 4 years
- Outcomes: \{player1 win, player2 win\}
- 4 Bookmakers (Bet365, Bet\&Win, ...)

Empirical Results

Available at: http://vovk.net/ICML2008/
Database football

- 8999 matches in English football competitions over 4 years
- Outcomes: \{home win, draw, away win\}
- 8 Bookmakers (Bet365, Bet\&Win, ...)

Database tennis

- 10,087 matches in different tournaments over 4 years
- Outcomes: \{player1 win, player2 win\}
- 4 Bookmakers (Bet365, Bet\&Win, ...)

Pre-processing: from odds to probabilities

$$
p(k)=a(k)^{-\gamma}
$$

where γ is related to the overround.

Empirical Results: football

Empirical Results: tennis

Empirical Results: comparisons

Question: Independently from the theory is the SAA really good compared to other algorithms?

Empirical Results: comparisons

Question: Independently from the theory is the SAA really good compared to other algorithms?

- Weighted average: the same as SSA but no function G
- Hedge (EWA)
- Weak aggregating

Empirical Results: comparisons

Football results

Algorithm	Maximal Difference	Theoretical Bound
Aggregating	1.1562	2.0794
Weighted Average	1.8697	16.6355
Hedge	4.5662	234.1159
Weak Aggregating	2.4755	464.0728

Empirical Results: comparisons

Tennis results

Algorithm	Maximal Difference	Theoretical Bound
Aggregating	1.2021	1.3863
Weighted Average	3.0566	11.0904
Hedge	9.0598	237.8904
Weak Aggregating	3.6101	473.0083

Empirical Results: comparisons

Empirical Results: comparisons

Empirical Results: comparisons

Other observations

- SAA is able to (explicitly) exploit the shape of the loss function
- Other algorithms are less aware of the loss function
- Experiments (not reported) on other algorithms, show that non-theoretically guaranteed algorithms do not perform that poorly but are much less robust

Discussion

- Is it possible to add side information?
- Is it the minimization of the regret wrt the best expert our real goal?
- Is it possible to merge model-based prediction and expert-based prediction?

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts
\$\$ How to Make Money with Online Learning \$\$

Conclusions

Other Online Learning Algorithms

- Follow-the-regularized leader
- The perceptron
- Proximal point algorithm
- Exponentiated gradient algorithms
- Mirror decent
- Passive-agressive algorithm
- ...

Other Online Learning Settings

- Online learning with partial monitoring
- Label-efficient learning
- Online learning in games
- Online binary classification
- Specific losses
- Contextual learning
- Hybrid stochastic-adversarial models
- ...

Applications of Online Learning

- Stock market prediction (universal portfolio)
- Betting strategies
- Ozone ensamble prediction
- Online email categorization
- Speech-to-text and Music-to-score Alignement
- ...

Things to Remember

Things to Remember

- Learning when data are coming in a stream is a very relevant problem

Things to Remember

- Learning when data are coming in a stream is a very relevant problem
- Online learning is about algorithms which are robust enough to working well in any case

Things to Remember

- Learning when data are coming in a stream is a very relevant problem
- Online learning is about algorithms which are robust enough to working well in any case
- In the expert advice model we can leverage on many experts of any kind

Things to Remember

- Learning when data are coming in a stream is a very relevant problem
- Online learning is about algorithms which are robust enough to working well in any case
- In the expert advice model we can leverage on many experts of any kind
- The EWA is a very flexible algorithm for both continuous and discrete prediction

Things to Remember

- Learning when data are coming in a stream is a very relevant problem
- Online learning is about algorithms which are robust enough to working well in any case
- In the expert advice model we can leverage on many experts of any kind
- The EWA is a very flexible algorithm for both continuous and discrete prediction
- Theory gives you worst-case guarantees on the algorithm performance

Things to Remember

- Learning when data are coming in a stream is a very relevant problem
- Online learning is about algorithms which are robust enough to working well in any case
- In the expert advice model we can leverage on many experts of any kind
- The EWA is a very flexible algorithm for both continuous and discrete prediction
- Theory gives you worst-case guarantees on the algorithm performance
- Many potential applications and it works

Advanced Topics in Machine Learning

Part II: An Introduction to Online Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr
sequel. Iille.inria.fr

