

Advanced Topics in Machine Learning Part II: An Introduction to Online Learning A. LAZARIC (*INRIA-Lille*)

DEI, Politecnico di Milano

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

nría

A. LAZARIC - An Introduction to Online Learning

Introduction

Outline

Introduction The Online Prediction Game Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

A. LAZARIC - An Introduction to Online Learning

Outline

Introduction The Online Prediction Game Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

The prediction problem

What will be the rain precipitation next month?

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?

nría

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?
- How many iPad will be sold next quarter?

nnía

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?
- How many iPad will be sold next quarter?
- How many contacts will have this webpage in the next hour?

The prediction problem

- What will be the rain precipitation next month?
- What will be the price of this stock tomorrow?
- How many iPad will be sold next quarter?
- ▶ How many contacts will have this webpage in the next hour?

▶ ..

Online Learning vs Statistical Learning

Limitations of Statistical Learning

- Reality is not *stochastic*
- Data are often arriving in a sequence
- Training and testing are rarely separated
- Massive datasets must be provided in a stream

Introduction The Online Prediction Game

Online Learning vs Statistical Learning (cont'd)

	SL	OL
Samples	Batch	In a stream
Assumptions	Stochastic model	Individual sequence
Analysis	Average case	Worst case
Performance	Excess risk	Regret

A. LAZARIC - An Introduction to Online Learning

The Prediction Game

The environment

▶ Outcome space \mathcal{Y}

The Prediction Game

The environment

- ▶ Outcome space \mathcal{Y}
- The learner
 - Decision (prediction) space \mathcal{D}

The Prediction Game

The environment

- \blacktriangleright Outcome space ${\mathcal Y}$
- The learner
 - Decision (prediction) space \mathcal{D}

The performance

▶ Loss function $\ell(p, y)$ with $y \in \mathcal{Y}$ and $p \in \mathcal{D}$

- At the same time
 - The environment chooses an outcome $y_t \in \mathcal{Y}$
 - The learner chooses a prediction $\hat{p}_t \in \mathcal{D}$

nría

- At the same time
 - The environment chooses an outcome $y_t \in \mathcal{Y}$
 - The learner chooses a prediction $\hat{p}_t \in \mathcal{D}$
- The learner suffers a loss $\ell(\hat{p}_t, y_t)$

- At the same time
 - The environment chooses an outcome $y_t \in \mathcal{Y}$
 - The learner chooses a prediction $\hat{p}_t \in \mathcal{D}$
- The learner suffers a loss $\ell(\hat{p}_t, y_t)$
- The environment reveals y_t

At each round t = 1, ..., n (not necessarily finite time)

- At the same time
 - The environment chooses an outcome $y_t \in \mathcal{Y}$
 - The learner chooses a prediction $\hat{p}_t \in \mathcal{D}$
- The learner suffers a loss $\ell(\hat{p}_t, y_t)$
- The environment reveals y_t

Outline

Introduction The Online Prediction Game Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

Introduction Binary Sequence Prediction

A "Gentle" Start: Binary Sequence Prediction

Problem: predict (online) the next bit in an arbitrary string of bits

- $\blacktriangleright \mathcal{Y} = \mathcal{D} = \{0, 1\}$
- $\ell(p, y) = \mathbb{I} \{ y \neq p \}$

Doubt: I do not know anything about where this string is coming from... and I am not an expert of strings of bits...

Doubt: I do not know anything about where this string is coming from... and I am not an expert of strings of bits... **Solution**: ask to experts!

Doubt: I do not know anything about where this string is coming from... and I am not an expert of strings of bits... **Solution**: ask to experts!

- ► N experts
- ▶ Each returning a prediction $f_{i,t} \in D$ (i = 1, ..., N)

Simple case: one of my experts perfectly knows the sequence

 $\exists i, \forall t, \ell(y_t, f_{i,t}) = 0$

Simple case: one of my experts perfectly knows the sequence

 $\exists i, \forall t, \ell(y_t, f_{i,t}) = 0$

Simple algorithm the *Halving* algorithm (a.k.a. "there can be only one!"):

Initialize the weights $w_{i,0} = 1$

- Collect all the experts' predictions f_{i,t}
- ► Take p̂_t = 1 if the *majority* of experts with w_i = 1 suggests 1, 0 otherwise
- Observe y_t

Set
$$w_i = 0$$
 for all the $f_{i,t} \neq y_t$

Introduction Binary Sequence Prediction

A "Gentle" Start: Binary Sequence Prediction (cont'd)

Question: how many mistakes does this algorithm make?

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 14/140

A "Gentle" Start: Binary Sequence Prediction (cont'd) Let W_m be the total number of *active* experts after *m* mistakes.

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 15/140

Let W_m be the total number of *active* experts after *m* mistakes.

• At the beginning m = 0 and $W_0 = N$. [algorithm]

Let W_m be the total number of *active* experts after *m* mistakes.

- At the beginning m = 0 and $W_0 = N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$W_m \leq \frac{W_{m-1}}{2}$$

Let W_m be the total number of *active* experts after *m* mistakes.

- At the beginning m = 0 and $W_0 = N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$W_m \leq \frac{W_{m-1}}{2}$$

Applying the previous relationship recursively [math]

$$W_m \leq \frac{W_{m-1}}{2} \leq \frac{W_{m-2}}{4} \leq \ldots \leq \frac{W_0}{2^m}$$

Let W_m be the total number of *active* experts after *m* mistakes.

- At the beginning m = 0 and $W_0 = N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$W_m \leq \frac{W_{m-1}}{2}$$

Applying the previous relationship recursively [math]

$$W_m \leq \frac{W_{m-1}}{2} \leq \frac{W_{m-2}}{4} \leq \ldots \leq \frac{W_0}{2^m}$$

 According to the "simple case", after *m* there will always at least one expert still active [assumption]

$$W_m \ge 1$$

Let W_m be the total number of *active* experts after *m* mistakes.

- At the beginning m = 0 and $W_0 = N$. [algorithm]
- At each mistake, at least half of the active experts were wrong and then removed: [algorithm]

$$W_m \leq \frac{W_{m-1}}{2}$$

Applying the previous relationship recursively [math]

$$W_m \leq \frac{W_{m-1}}{2} \leq \frac{W_{m-2}}{4} \leq \ldots \leq \frac{W_0}{2^m}$$

 According to the "simple case", after *m* there will always at least one expert still active [assumption]

$$W_m \ge 1$$

Putting together [math]

$$\frac{W_0}{2^m} \ge 1 \Rightarrow m \le \lfloor \log_2 \mathsf{N} \rfloor$$

Theorem

For **any** binary sequence y_1, \ldots, y_t, \ldots , we consider a halving algorithm on N experts. If one experts makes no mistake over the sequence, then

 $m \leq \lfloor \log_2 N \rfloor$

Theorem

For **any** binary sequence y_1, \ldots, y_t, \ldots , we consider a halving algorithm on N experts. If one experts makes no mistake over the sequence, then

 $m \leq \lfloor \log_2 N \rfloor$

- No stochastic assumption!
- No high-probability result!
- Finite number of mistakes for **ANY** possible sequence!

Continuous Prediction with Expert Advice: the EWA

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Continuous Prediction

- Outcome space *Y* is arbitrary
- Decision space \mathcal{D} is a convex subset of \mathbb{R}^s
- ► Loss function ℓ(p, y)
 - ▶ bounded $(\ell : \mathcal{D} \times \mathcal{Y} \rightarrow [0, 1])$
 - convex in the first argument $(\ell(\cdot, y) \text{ is convex for any } y \in \mathcal{Y})$

• Experts
$$f_{1,t}, \ldots, f_{N,t}$$

► The performance measure: the (expert) regret

$$R_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \min_{1 \le i \le N} \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

- Experts $f_{1,t}, \ldots, f_{N,t}$
- ► The performance measure: the (expert) regret

$$R_n = \underbrace{\sum_{t=1}^n \ell(\hat{p}_t, y_t)}_{\text{alg. cumul. loss}} - \underbrace{\min_{1 \le i \le N}}_{1 \le i \le N} \underbrace{\sum_{t=1}^n \ell(f_{i,t}, y_t)}_{\text{expert } i \text{ cumul. loss}}$$

- Experts $f_{1,t}, \ldots, f_{N,t}$
- ► The performance measure: the (expert) regret

$$R_n = \sum_{\substack{t=1 \\ \text{alg. cumul. loss}}}^n \ell(\hat{p}_t, y_t) - \underbrace{\min_{1 \le i \le N} \sum_{t=1}^n \ell(f_{i,t}, y_t)}_{\text{best expert in hindsight}}$$

• Expert cumulative loss on the sequence $\mathbf{y}^n = (y_1, \dots, y_n)$

$$L_{i,n}(\mathbf{y}^n) = \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

Algorithm A cumulative loss

$$L_n(\mathcal{A}; \mathbf{y}^n) = \sum_{t=1}^n \ell(\hat{p}_t, y_t)$$

Regret

$$R_n = L_n(\mathcal{A}; \mathbf{y}^n) - \min_i L_{i,n}(\mathbf{y}^n)$$

A. LAZARIC - An Introduction to Online Learning

• Expert cumulative loss on the sequence $\mathbf{y}^n = (y_1, \dots, y_n)$

$$L_{i,n}(\mathbf{y}^n) = \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

Algorithm A cumulative loss

$$L_n(\mathcal{A}; \mathbf{y}^n) = \sum_{t=1}^n \ell(\hat{p}_t, y_t)$$

Regret

$$R_n = L_n(\mathcal{A}; \mathbf{y}^n) - \min_i L_{i,n}(\mathbf{y}^n)$$

Objective: find an *alg.* with *small regret* for *any* sequence **y**ⁿ

Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction (cont'd)

The definition of expert is so general that almost anything fits:

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 25/140

The definition of expert is so general that almost anything fits:

• $f_{i,t}$ can be a function of a *context* $x \Rightarrow$ *adaptive experts*

The definition of expert is so general that almost anything fits:

- $f_{i,t}$ can be a function of a *context* $x \Rightarrow$ *adaptive experts*
- $f_{i,t}$ can change over time \Rightarrow *learning experts*

ría

The definition of expert is so general that almost anything fits:

- $f_{i,t}$ can be a function of a *context* $x \Rightarrow$ *adaptive experts*
- $f_{i,t}$ can change over time \Rightarrow *learning experts*
- *f_{i,t}* is arbitrary ⇒ experts can even form a *coalition against* the learner

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Initialize the weights $w_{i,0} = 1$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

Initialize the weights $w_{i,0} = 1$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

• Predict
$$(W_{t-1} = \sum_{i=1}^{N} w_{i,t-1})$$

$$\hat{p}_t = rac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{W_{t-1}}$$

Initialize the weights $w_{i,0} = 1$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

► Predict
$$(W_{t-1} = \sum_{i=1}^{N} w_{i,t-1})$$

 $\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{W_{t-1}}$

• Observe y_t

Initialize the weights $w_{i,0} = 1$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

► Predict
$$(W_{t-1} = \sum_{i=1}^{N} w_{i,t-1})$$

 $\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{W_{t-1}}$

- Observe y_t
- Suffer a loss $\ell(\hat{p}_t, y_t)$

Initialize the weights
$$w_{i,0} = 1$$

• Collect experts' predictions $f_{1,t}, \dots, f_{N,t}$
• Predict $(W_{t-1} = \sum_{i=1}^{N} w_{i,t-1})$
 $\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{W_{t-1}}$
• Observe y_t
• Suffer a loss $\ell(\hat{p}_t, y_t)$
• Update

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Initialize the weights $w_{i,0} = 1$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

• Predict
$$(W_{t-1} = \sum_{i=1}^{N} w_{i,t-1})$$

$$\hat{p}_{t} = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{W_{t-1}}$$

- Observe y_t
- Suffer a loss $\ell(\hat{p}_t, y_t)$
- Update (the weights are the exponential cumulative losses)

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Initialize the weights $w_{i,0} = 1$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

• Predict
$$(W_{t-1} = \sum_{i=1}^{N} w_{i,t-1})$$

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{W_{t-1}}$$

- Observe y_t
- Suffer a loss $\ell(\hat{p}_t, y_t)$
- Update (the weights are the exponential cumulative losses)

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Implement.: store and update the normalized weights $\hat{w}_{i,t} = w_{i,t}/W_t$.

Theorem

If \mathcal{D} is a convex decision space and the loss function is bounded and convex in the first argument, then on any sequence \mathbf{y}^n , $EWA(\eta)$ satisfies

$$R_n = L_n(\mathcal{A}; \mathbf{y}^n) - \min_i L_{i,n}(\mathbf{y}^n) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}.$$

A. LAZARIC - An Introduction to Online Learning

The proof is divided in three steps.

$$\log \frac{W_{n+1}}{W_1} = \log W_{n+1} - \log W_1 = \log \left(\sum_{i=1}^N w_{i,n+1} \right) - \log N$$

The proof is divided in three steps.

$$\log \frac{W_{n+1}}{W_1} = \log W_{n+1} - \log W_1 = \log \left(\sum_{i=1}^N w_{i,n+1}\right) - \log N$$
$$\geq \log \left(\max_{1 \le i \le N} w_{i,n+1}\right) - \log N$$

The proof is divided in three steps.

$$\log \frac{W_{n+1}}{W_1} = \log W_{n+1} - \log W_1 = \log \left(\sum_{i=1}^N w_{i,n+1} \right) - \log N$$
$$\geq \log \left(\max_{1 \le i \le N} w_{i,n+1} \right) - \log N$$
$$= -\eta \min_{1 \le i \le N} \sum_{t=1}^n \ell(f_{i,t}, y_t) - \log N$$

$$\log \frac{W_{t+1}}{W_t} = \log \Big(\sum_{i=1}^N \frac{w_{i,t}}{W_t} \exp \big(-\eta \ell(f_{i,t}, y_t) \big) \Big)$$

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_{i=1}^N \frac{w_{i,t}}{W_t} \exp \left(-\eta \ell(f_{i,t}, y_t) \right) \right)$$
$$= \log \left(\mathbb{E} \exp \left(-\eta \ell(f_{l,t}, y_t) \right) \right) \quad (\text{with } \mathbb{P}(I_t = i) = w_{i,t}/W_t)$$

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_{i=1}^{N} \frac{w_{i,t}}{W_t} \exp \left(-\eta \ell(f_{i,t}, y_t) \right) \right)$$

= $\log \left(\mathbb{E} \exp \left(-\eta \ell(f_{l,t}, y_t) \right) \right)$ (with $\mathbb{P}(I_t = i) = w_{i,t}/W_t$)
 $\leq -\eta \mathbb{E} \ell(f_{I,t}, y_t) + \frac{\eta^2}{8}$ (Hoeffding's lemma)

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_{i=1}^{N} \frac{w_{i,t}}{W_t} \exp \left(-\eta \ell(f_{i,t}, y_t) \right) \right)$$

= $\log \left(\mathbb{E} \exp \left(-\eta \ell(f_{l,t}, y_t) \right) \right)$ (with $\mathbb{P}(I_t = i) = w_{i,t}/W_t$)
 $\leq -\eta \mathbb{E} \ell(f_{I,t}, y_t) + \frac{\eta^2}{8}$ (Hoeffding's lemma)
 $\leq -\eta \ell(\mathbb{E} f_{I,t}, y_t) + \frac{\eta^2}{8}$ (Jensen's inequality)

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_{i=1}^{N} \frac{w_{i,t}}{W_t} \exp \left(-\eta \ell(f_{i,t}, y_t) \right) \right)$$

= $\log \left(\mathbb{E} \exp \left(-\eta \ell(f_{l,t}, y_t) \right) \right)$ (with $\mathbb{P}(I_t = i) = w_{i,t}/W_t$)
 $\leq -\eta \mathbb{E} \ell(f_{I,t}, y_t) + \frac{\eta^2}{8}$ (Hoeffding's lemma)
 $\leq -\eta \ell(\mathbb{E} f_{I,t}, y_t) + \frac{\eta^2}{8}$ (Jensen's inequality)
 $= -\eta \ell(\hat{p}_t, y_t) + \frac{\eta^2}{8}$

Step 3: joint upper and lower bounds Notice that $\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t}$

Step 3: joint upper and lower bounds Notice that $\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t}$

$$\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_t}$$

Step 3: joint upper and lower bounds Notice that $\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t}$

$$\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} - \eta \min_{1 \le i \le N} \sum_{t=1}^{n} \ell(f_{i,t}, y_{t}) - \log N \le \sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} \le \sum_{t=1}^{n} \left(-\eta \ell(\hat{p}_{t}, y_{t}) + \frac{\eta^{2}}{8} \right)$$

Step 3: joint upper and lower bounds Notice that $\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t}$

$$\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} -\eta \min_{1 \le i \le N} \sum_{t=1}^{n} \ell(f_{i,t}, y_{t}) - \log N \le \sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}} \le \sum_{t=1}^{n} \left(-\eta \ell(\hat{p}_{t}, y_{t}) + \frac{\eta^{2}}{8} \right) -\eta \min_{1 \le i \le N} L_{i,n} - \log N \le -\eta L_{n}(\mathcal{A}) + \frac{n\eta^{2}}{8}$$

The statement follows by reordering the terms.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Parameter Tuning

Tuning: how should we tune the parameter η ?

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Parameter Tuning

Tuning: how should we tune the parameter η ?

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

▶ Big η = aggressive algorithm: converge fast to one expert but it could be wrong

Parameter Tuning

Tuning: how should we tune the parameter η ?

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

- ▶ Big η = aggressive algorithm: converge fast to one expert but it could be wrong
- Small η = conservative algorithm: does not converge to the wrong expert but it could take a long time

Tuning: how should we tune the parameter η ?

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Tuning: how should we tune the parameter η ?

$$w_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Parameter Tuning

Parameter Tuning (cont'd)

Tuning: If we know the horizon *n*, then by setting $\eta = \sqrt{\frac{8 \log N}{n}}$

Parameter Tuning

Parameter Tuning (cont'd)

Tuning: If we know the horizon *n*, then by setting $\eta = \sqrt{\frac{8 \log N}{n}}$

$$R_n(EWA) \leq \sqrt{rac{n}{2}\log N}$$

Tuning: If we know the horizon *n*, then by setting $\eta = \sqrt{\frac{8 \log N}{n}}$

$$R_n(EWA) \leq \sqrt{rac{n}{2}\log N}$$

► Logarithmic dependency on N ⇒ add many experts, no problem!

Tuning: If we know the horizon *n*, then by setting $\eta = \sqrt{\frac{8 \log N}{n}}$

$$R_n(EWA) \leq \sqrt{rac{n}{2}\log N}$$

► Logarithmic dependency on N ⇒ add many experts, no problem!

• Per–step regret
$$R_n/n = \sqrt{1/n}
ightarrow 0$$

Tuning: If we know the horizon *n*, then by setting $\eta = \sqrt{\frac{8 \log N}{n}}$

$$R_n(EWA) \leq \sqrt{rac{n}{2}\log N}$$

- Logarithmic dependency on N
 ⇒ add many experts, no problem!
 Per–step regret R_n/n = √1/n → 0
 - \Rightarrow EWA is asymptotically as good as the best expert!

Continuous Prediction with Expert Advice: the EWA

Parameter Tuning

Parameter Tuning (cont'd)

Problem: Sometimes *n* is unknown (or it does not exist at all)

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 36/140

Continuous Prediction with Expert Advice: the EWA

Parameter Tuning

Parameter Tuning (cont'd)

Problem: Sometimes *n* is unknown (or it does not exist at all) **Solution**: set $\eta_t = 2\sqrt{\frac{\log N}{t}}$ and

 $R_n(EWA) \leq \sqrt{n \log N}$

Bound for **batch** binary classification with *N* hypotheses on data *i.i.d.* from \mathcal{P}

$$R(\hat{h}; \mathcal{P}) - R(h^*; \mathcal{P}) \le O\left(\sqrt{\frac{\log N/\delta}{n}}\right)$$

if the observations are i.i.d. from a stationary distribution $\ensuremath{\mathcal{P}}$

A. LAZARIC - An Introduction to Online Learning

Bound for **batch** binary classification with *N* hypotheses on data *i.i.d.* from \mathcal{P}

$$n(R(\hat{h}; \mathcal{P}) - \min_{h \in \mathcal{H}} R(h; \mathcal{P})) \le O(\sqrt{n \log N/\delta})$$

if the observations are i.i.d. from a stationary distribution $\ensuremath{\mathcal{P}}$

Bound for **batch** binary classification with *N* hypotheses on data *i.i.d.* from \mathcal{P}

$$n\big(\mathbb{E}_{x,y}[\ell(\hat{h}(x),y)] - \min_{h \in \mathcal{H}} \mathbb{E}_{x,y}[\ell(h(x),y)]\big) \le O\Big(\sqrt{n \log N/\delta}\Big)$$

if the observations are i.i.d. from a stationary distribution $\ensuremath{\mathcal{P}}$

Bound for **batch** binary classification with *N* hypotheses on data *i.i.d.* from \mathcal{P}

$$\mathbb{E}_{\mathsf{x},\mathsf{y}}[n\ell(\hat{h}(\mathsf{x}),\mathsf{y})] - \min_{h \in \mathcal{H}} \mathbb{E}_{\mathsf{x},\mathsf{y}}[n\ell(h(\mathsf{x}),\mathsf{y})]) \le O\Big(\sqrt{n\log N/\delta}\Big)$$

if the observations are i.i.d. from a stationary distribution $\ensuremath{\mathcal{P}}$

Bound for **batch** binary classification with *N* hypotheses on data *i.i.d.* from \mathcal{P}

$$\mathbb{E}_{x,y}[n\ell(\hat{h}(x),y)] - \min_{h \in \mathcal{H}} \mathbb{E}_{x,y}[n\ell(h(x),y)]) \le O\Big(\sqrt{n \log N/\delta}\Big)$$

if the observations are i.i.d. from a stationary distribution $\ensuremath{\mathcal{P}}$

Bound for **online** binary classification with *N* experts on any sequence y^n

$$\sum_{t=1}^n \ell(\hat{p}_t, y_t) - \min_i \sum_{t=1}^n \ell(f_{i,t}, y_t) \le \sqrt{n \log N}$$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game The Exponentially Weighted Average Forecaster Parameter Tuning Bounds for Small Losses

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

An Alternative Bound (for Small Losses)

Question: What if the best expert is *really* good? (i.e., $L_n^* = \min_i L_{i,n}$ is small)

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 39/140

An Alternative Bound (for Small Losses) (cont'd)

Theorem

If \mathcal{D} is a convex decision space and the loss function is bounded and convex in the first argument. Let $L_n^* = \min_i L_{i,n}$, then on any sequence \mathbf{y}^n , EWA(η) satisfies

$$L_n(\mathcal{A}) \leq rac{\eta L_n^* + \log N}{1 - \exp^{-\eta}}$$

A. LAZARIC - An Introduction to Online Learning

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If
$$\eta = 1$$
 (aggressive algorithm)

$$L_n(\mathcal{A}) \leq \frac{e}{e-1} (L_n^* + \log N) = L_n^* + \frac{1}{e-1} L_n^* + \frac{e}{e-1} \log N$$

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If
$$\eta = 1$$
 (aggressive algorithm)

$$L_n(\mathcal{A}) \leq \frac{e}{e-1} (L_n^* + \log N) = L_n^* + \frac{1}{e-1} L_n^* + \frac{e}{e-1} \log N$$

► If L_n^* is small (i.e., $L_n^* \ll \sqrt{n}$) it is much *better* than the previous bound

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If
$$\eta = 1$$
 (aggressive algorithm)

$$L_n(\mathcal{A}) \leq \frac{e}{e-1} (L_n^* + \log N) = L_n^* + \frac{1}{e-1} L_n^* + \frac{e}{e-1} \log N$$

- ▶ If L_n^* is small (i.e., $L_n^* \ll \sqrt{n}$) it is much *better* than the previous bound
- ▶ If L_n^* is not small (i.e., $L_n^* > \sqrt{n}$) it is much *worse* than the previous bound

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If
$$\eta = 1$$
 (aggressive algorithm)

$$L_n(\mathcal{A}) \leq \frac{e}{e-1} (L_n^* + \log N) = L_n^* + \frac{1}{e-1} L_n^* + \frac{e}{e-1} \log N$$

- ▶ If L_n^* is small (i.e., $L_n^* \ll \sqrt{n}$) it is much *better* than the previous bound
- ▶ If L_n^* is not small (i.e., $L_n^* > \sqrt{n}$) it is much *worse* than the previous bound
- If L^{*}_n = 0 we have (almost) the same performance as the Halving algorithm

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If we optimally tune $\eta = \log(1 + \sqrt{(2 \log N)/L_n^*})$

$$L_n(\mathcal{A}) \leq L_n^* + \sqrt{2L_n^*\log N} + \log N$$

A. LAZARIC - An Introduction to Online Learning

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If we optimally tune $\eta = \log(1 + \sqrt{(2 \log N)/L_n^*})$

$$L_n(\mathcal{A}) \leq L_n^* + \sqrt{2L_n^*\log N} + \log N$$

Problem: the performance of the best expert is usually not known...

Algorithm adapting to the complexity of the problem?

An Alternative Bound (for Small Losses) (cont'd)

Corollary

If we optimally tune $\eta = \log(1 + \sqrt{(2 \log N)/L_n^*})$

$$L_n(\mathcal{A}) \leq L_n^* + \sqrt{2L_n^*\log N} + \log N$$

Problem: the performance of the best expert is usually not known...

Algorithm adapting to the complexity of the problem?

Almost... (see NIPS this year)

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

A. LAZARIC - An Introduction to Online Learning

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

A. LAZARIC - An Introduction to Online Learning

Discrete Prediction

- Outcome space \mathcal{Y} is discrete (with $|Y| \geq 2$)
- Decision space $\mathcal{D} = \mathcal{Y}$
- Loss function $\ell(p, y) = \mathbb{I} \{ p \neq y \}$

The Discrete Prediction Game

Discrete Prediction (cont'd)

• Experts
$$f_{1,t}, \ldots, f_{N,t}$$

The performance measure: the (expert) regret

$$R_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \min_{1 \le i \le N} \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Remark: everything is almost the same as in the continuous prediction, so it should be easy!

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 47/140

The Discrete Prediction Game

Discrete Prediction (cont'd)

Remark: everything is almost the same as in the continuous prediction, so it should be easy! *No*

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 47/140

Example: Two experts: $f_{1,t} = 0$ and $f_{2,t} = 1$ at any t, then

Example: Two experts: $f_{1,t} = 0$ and $f_{2,t} = 1$ at any t, then

For any sequence yⁿ = (y₁,..., y_n) ∈ {0,1}ⁿ, there exists an experts i such that

$$L_{i,n} = \sum_{t=1}^n \ell(f_{i,t}, y_t) \ge n/2$$

Example: Two experts: $f_{1,t} = 0$ and $f_{2,t} = 1$ at any t, then

For any sequence yⁿ = (y₁,..., y_n) ∈ {0,1}ⁿ, there exists an experts i such that

$$L_{i,n} = \sum_{t=1}^n \ell(f_{i,t}, y_t) \ge n/2$$

For any algorithm \mathcal{A} , there exists a sequence $\mathbf{y}^n(\mathcal{A})$ such that

$$L_n(\mathcal{A}) = \sum_{t=1}^n \ell(\hat{p}_t, y_t(\mathcal{A})) = n$$

Let's (adversarially) construct the sequence $\mathbf{y}^n(\mathcal{A})$.

At time 1, the adversary sets y₁(A) = 1 − p̂₁ (for a fixed algorithm A this is always possible)

Let's (adversarially) construct the sequence $\mathbf{y}^n(\mathcal{A})$.

- At time 1, the adversary sets y₁(A) = 1 − p̂₁ (for a fixed algorithm A this is always possible)
- At time t, the algorithm chooses p̂t on the basis of (y₁(A),..., yt-1(A)) (in a predictable way)

Let's (adversarially) construct the sequence $\mathbf{y}^n(\mathcal{A})$.

- At time 1, the adversary sets y₁(A) = 1 − p̂₁ (for a fixed algorithm A this is always possible)
- At time t, the algorithm chooses p̂t on the basis of (y₁(A),..., yt-1(A)) (in a predictable way)
- At time t, the adversary sets $y_t(\mathcal{A}) = 1 \hat{p}_t$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

In the discrete prediction problem, for any deterministic algorithm $\mathcal{A},$ the worst case regret is

$$R_n(\mathcal{A}) \geq \frac{n}{2}$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

In the discrete prediction problem, for any deterministic algorithm \mathcal{A} , the worst case regret is

$$R_n(\mathcal{A}) \geq \frac{n}{2}$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

In the discrete prediction problem, for any deterministic algorithm \mathcal{A} , the worst case regret is

$$R_n(\mathcal{A}) \geq \frac{n}{2}$$

Solution: let's randomize!

The Discrete Prediction Game

Discrete Prediction (cont'd)

Problem: how do we *randomize* over experts without *loosing in performance*?

A. LAZARIC - An Introduction to Online Learning

The Discrete Prediction Game

Discrete Prediction (cont'd)

Problem: how do we *randomize* over experts without *loosing in performance*?

Solution: use the Exponentially Weighted Average forecaster!

•
$$\mathcal{D}' = \{ p \in [0,1]^N : \sum_{i=1}^N p_i = 1 \} \Rightarrow \text{convex}$$

•
$$\mathcal{D}' = \{ p \in [0, 1]^N : \sum_{i=1}^N p_i = 1 \} \Rightarrow \text{convex}$$

• $Y' = Y \times \mathcal{D}^N$

•
$$\mathcal{D}' = \{ p \in [0,1]^N : \sum_{i=1}^N p_i = 1 \} \Rightarrow \text{convex}$$

$$\blacktriangleright Y' = Y \times \mathcal{D}^N$$

•
$$\ell'(p, (y, f_1, \dots, f_N)) = \sum_{i=1}^N p_i \ell(f_i, y) \Rightarrow \text{convex and bounded}$$

•
$$y'_t = (y_t, f_{1,t}, \dots, f_{N,t})$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

We notice that

$$\ell'(f'_{i,t},y'_t) = \ell'(e_i,(y_t,f_{1,t},\ldots,f_{N,t})) = \ell(f_{i,t},y_t)$$

Thus

$$L_{i,t} = \sum_{s=1}^{t} \ell(f_{i,s}, y_s) = \sum_{s=1}^{t} \ell'(f'_{i,s}, y'_s)$$

A. LAZARIC - An Introduction to Online Learning

At each round t of the *fictitious continuos* problem the algorithm returns

$$\hat{p}_t = (\hat{p}_{1,t}, \ldots, \hat{p}_{N,t})$$

At each round t of the *fictitious continuos* problem the algorithm returns

$$\hat{p}_t = (\hat{p}_{1,t}, \ldots, \hat{p}_{N,t})$$

At each round *t* of the *real discrete* problem the algorithm returns (*at random*)

$$I_t \sim \hat{p}_t = (\hat{p}_{1,t}, \ldots, \hat{p}_{N,t})$$

At each round t of the *fictitious continuos* problem the algorithm returns

$$\hat{p}_t = (\hat{p}_{1,t}, \ldots, \hat{p}_{N,t})$$

At each round *t* of the *real discrete* problem the algorithm returns (*at random*)

$$I_t \sim \hat{p}_t = (\hat{p}_{1,t}, \dots, \hat{p}_{N,t})$$

and in expectation

$$\mathbb{E}[\ell(f_{I_t}, y_t)] = \sum_{t=1}^{N} \hat{p}_{i,t}\ell(f_{i,t}, y_t) = \ell'(\hat{p}_t, (y_t, f_{1,t}, \dots, f_{N,t})) = \ell'(\hat{p}_t, y'_t)$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

The performance is

$$L'_n(\mathcal{A}) = \sum_{t=1}^n \ell'(\hat{p}_t, y'_t) = \mathbb{E}\big[\sum_{t=1}^n \ell(f_{l_t, t}, y_t)\big] = \mathbb{E}[L_n(\mathcal{A})]$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell(f_i, y)$	$\ell'(p,y') = \sum_{i=1}^{N} p_i \ell(f_i,y)$	
$\ell(f_{i,t}, y_t)$	$\ell'(f'_{i,t},y'_t)$	
$\mathbb{E}[\ell(f_{I_t}, y_t)]$	$\ell'(\hat{p}_t, y_t')$	
$\mathbb{E}[L_n(\mathcal{A})]$	$L'_n(\mathcal{A})$	

A. LAZARIC - An Introduction to Online Learning

The Discrete Prediction Game

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell(f_i, y)$	$\ell'(p,y') = \sum_{i=1}^{N} p_i \ell(f_i,y)$	
$\ell(f_{i,t}, y_t)$	$\ell'(f'_{i,t},y'_t)$	cumulative losses coincide
$\mathbb{E}[\ell(f_{I_t}, y_t)]$	$\ell'(\hat{p}_t, y_t')$	
$\mathbb{E}[L_n(\mathcal{A})]$	$L'_n(\mathcal{A})$	

A. LAZARIC - An Introduction to Online Learning

The Discrete Prediction Game

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell(f_i, y)$	$\ell'(p,y') = \sum_{i=1}^{N} p_i \ell(f_i,y)$	
$\ell(f_{i,t}, y_t)$	$\ell'(f'_{i,t},y'_t)$	cumulative losses coincide
$\mathbb{E}[\ell(f_{I_t}, y_t)]$	$\ell'(\hat{p}_t, y_t')$	coincide in expectation
$\mathbb{E}[L_n(\mathcal{A})]$	$L'_n(\mathcal{A})$	

A. LAZARIC - An Introduction to Online Learning

The Discrete Prediction Game

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell(f_i, y)$	$\ell'(p,y') = \sum_{i=1}^{N} p_i \ell(f_i,y)$	
$\ell(f_{i,t}, y_t)$	$\ell'(f'_{i,t},y'_t)$	cumulative losses coincide
$\mathbb{E}[\ell(f_{I_t}, y_t)]$	$\ell'(\hat{p}_t, y_t')$	coincide in expectation
$\mathbb{E}[L_n(\mathcal{A})]$	$L'_n(\mathcal{A})$	coincide in expectation

A. LAZARIC - An Introduction to Online Learning

The Discrete Prediction Game

Discrete Prediction (cont'd)

Discrete	Continuous	
$\ell(f_i, y)$	$\ell'(p,y') = \sum_{i=1}^{N} p_i \ell(f_i,y)$	
$\ell(f_{i,t}, y_t)$	$\ell'(f'_{i,t},y'_t)$	cumulative losses coincide
$\mathbb{E}[\ell(f_{I_t}, y_t)]$	$\ell'(\hat{p}_t, y_t')$	coincide in expectation
$\mathbb{E}[L_n(\mathcal{A})]$	$L'_n(\mathcal{A})$	coincide in expectation

A. LAZARIC - An Introduction to Online Learning

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}' is a convex decision space and the loss function ℓ' is bounded and convex in the first argument, then on any sequence \mathbf{y}'^n , $EWA(\eta)$ satisfies

$$R'_n = L'_n(\mathcal{A}; \mathbf{y}'^n) - \min_i L'_{i,n}(\mathbf{y}'^n) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}.$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}' is a convex decision space and the loss function ℓ' is bounded and convex in the first argument, then on any sequence \mathbf{y}'^n , $EWA(\eta)$ satisfies

$$R'_n = L'_n(\mathcal{A}; \mathbf{y}'^n) - \min_i L_{i,n}(\mathbf{y}'^n) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}.$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}' is a convex decision space and the loss function ℓ' is bounded and convex in the first argument, then on any sequence \mathbf{y}'^n , $EWA(\eta)$ satisfies

$$\mathbf{R}'_{n} = \mathbb{E}[L_{n}(\mathcal{A}; \mathbf{y}'^{n})] - \min_{i} L_{i,n}(\mathbf{y}'^{n}) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}' is a convex decision space and the loss function ℓ' is bounded and convex in the first argument, then on any sequence \mathbf{y}'^n , $EWA(\eta)$ satisfies

$$\mathbb{E}[R_n] = \mathbb{E}[L_n(\mathcal{A}; \mathbf{y}^{\prime n})] - \min_i L_{i,n}(\mathbf{y}^{\prime n}) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}.$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If \mathcal{D}' is a convex decision space and the loss function ℓ' is bounded and convex in the first argument, then on any sequence \mathbf{y}'^n , $EWA(\eta)$ satisfies

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If \mathcal{D} is a is a discrete space and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, EWA(η) satisfies

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If $\mathcal{D} = \mathcal{Y}$ are discrete spaces and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, the randomized EWA(η) satisfies

$$\mathbb{E}[R_n] = \mathbb{E}[L_n(\mathcal{A}; \mathbf{y}^{\prime n})] - \min_i L_{i,n}(\mathbf{y}^{\prime n}) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}.$$

and

$$\mathbb{E}[R_n] = \mathbb{E}[L_n(\mathcal{A}; \mathbf{y}^{\prime n})] - \min_i L_{i,n}(\mathbf{y}^{\prime n}) \leq \sqrt{\frac{n}{2} \log N}.$$

if η is properly tuned.

Theorem

If $\mathcal{D} = \mathcal{Y}$ are discrete spaces and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, the randomized EWA(η) satisfies

$$\mathbb{E}[R_n] = \mathbb{E}[L_n(\mathcal{A}; \mathbf{y}^{\prime n})] - \min_i L_{i,n}(\mathbf{y}^{\prime n}) \leq \frac{\log N}{\eta} + \frac{\eta n}{8}.$$

and

$$\mathbb{E}[R_n] = \mathbb{E}[L_n(\mathcal{A}; \mathbf{y}^{\prime n})] - \min_i L_{i,n}(\mathbf{y}^{\prime n}) \leq \sqrt{\frac{n}{2} \log N}.$$

if η is properly tuned.

Problem: interesting but this holds only on average, does it mean that from time to time the algorithm can perform arbitrarily bad?

Solution: do you remember the Chernoff-Hoeffding bound?

$$\mathbb{P}\Big[\sum_{t=1}^{n} X_t - \sum_{t=1}^{n} \mathbb{E}[X_t] > \varepsilon\Big] \le \exp\left(-2\varepsilon^2/n\right)$$

Solution: do you remember the Chernoff-Hoeffding bound?

$$\mathbb{P}\Big[\sum_{t=1}^{n} X_t - \sum_{t=1}^{n} \mathbb{E}[X_t] > \varepsilon\Big] \le \exp\left(-2\varepsilon^2/n\right)$$

$$\mathbb{P}\Big[\sum_{t=1}^{n}\ell(f_{l_t,t},y_t)-\sum_{t=1}^{n}\mathbb{E}[\ell(f_{l_t,t},y_t)]>\varepsilon\Big]\leq \exp\big(-2\varepsilon^2/n\big)$$

 \Rightarrow

Solution: do you remember the Chernoff-Hoeffding bound?

$$\mathbb{P}\Big[\sum_{t=1}^{n} X_{t} - \sum_{t=1}^{n} \mathbb{E}[X_{t}] > \varepsilon\Big] \le \exp\left(-2\varepsilon^{2}/n\right)$$

$$\Rightarrow \qquad \mathbb{P}\Big[\sum_{t=1}^{n} \ell(f_{l,t}, y_{t}) - \sum_{t=1}^{n} \mathbb{E}[\ell(f_{l,t}, y_{t})] > \varepsilon\Big] \le \exp\left(-2\varepsilon^{2}/n\right)$$

$$\Rightarrow \qquad \mathbb{P}\Big[L_{n}(\mathcal{A}) - \mathbb{E}[L_{n}(\mathcal{A})] > \varepsilon\Big] \le \exp\left(-2\varepsilon^{2}/n\right)$$

The Discrete Prediction Game

Discrete Prediction (cont'd)

Theorem

If $\mathcal{D} = \mathcal{Y}$ are discrete spaces and ℓ is any loss function, then on any sequence $\mathbf{y}^{\prime n}$, the randomized EWA(η) satisfies

$$R_n = L_n(\mathcal{A}; \mathbf{y}^n) - \min_i L_{i,n}(\mathbf{y}^n) \le \sqrt{\frac{n}{2} \log N} + \sqrt{\frac{n}{2} \log \frac{1}{\delta}}$$

with probability $1 - \delta$.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

Lower Bounds

Question: EWA(η) seems good but I am sure that **my** algorithm can do better!

Lower Bounds

Question: EWA(η) seems good but I am sure that **my** algorithm can *do better*!

Answer: don't even try... EWA is the *best possible algorithm*! Informally:

$$\inf_{\mathcal{A}} \sup_{\mathbf{y}^n} R_n(\mathcal{A}; \mathbf{y}^n) \geq \sqrt{\frac{n}{2} \log N}$$

Lower Bounds

Question: EWA(η) seems good but I am sure that **my** algorithm can *do better*!

Answer: don't even try... EWA is the *best possible algorithm*! Informally:

$$\inf_{\mathcal{A}} \sup_{\mathbf{y}^n} R_n(\mathcal{A}; \mathbf{y}^n) \geq \sqrt{\frac{n}{2} \log N}$$

for some losses...

• Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$
- ▶ Mixable: optimal regret c log N but not (always) achieved EWA

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$
- ▶ Mixable: optimal regret c log N but not (always) achieved EWA
- Exp-concave: EWA is optimal with regret c log N

- Bounded and convex: EWA is optimal with regret $O(\sqrt{n \log N})$
- ▶ Mixable: optimal regret c log N but not (always) achieved EWA
- Exp-concave: EWA is optimal with regret c log N
- Non-convex: EWA is optimal in discrete prediction

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

Tracking the Best Expert Tree Experts Shortest Path Problem Infinite Experts

\$\$ How to Make Money with Online Learning \$\$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

Tracking the Best Expert Tree Experts Shortest Path Problem Infinite Experts

\$\$ How to Make Money with Online Learning \$\$

Tracking the Best Expert

A Remark on the Regret

$$R_n = L_n(\mathcal{A}) - \min_i L_{i,n}$$

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 66/140

A Remark on the Regret

$$R_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \min_i \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

A Remark on the Regret

$$R_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \min_i \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

Remark: algorithm competes against the best *fixed* expert

A. LAZARIC - An Introduction to Online Learning

A Remark on the Regret

$$R_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \min_i \sum_{t=1}^n \ell(f_{i,t}, y_t)$$

Remark: algorithm competes against the best *fixed* expert **Problem**: what if the *good* expert *changes over time*?

A Remark on the Regret (cont'd)

Question: why do not design an algorithm to compete against the best *changing* expert?

$$R_{n} = \sum_{t=1}^{n} \ell(\hat{p}_{t}, y_{t}) - \min_{i} \sum_{t=1}^{n} \ell(f_{i,t}, y_{t})$$

A. LAZARIC - An Introduction to Online Learning

A Remark on the Regret (cont'd)

Question: why do not design an algorithm to compete against the best *changing* expert?

$$R_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \sum_{t=1}^n \min_i \ell(f_{i,t}, y_t)$$

Switching Experts

A *switching* compound expert σ is

 $\sigma \in \{1, \ldots, N\}^n$

Switching Experts

A *switching* compound expert σ is

$$\sigma \in \{1, \ldots, N\}^n$$

At each round t it chooses expert σ_t and cumulate a loss

$$L_{\sigma,n} = \sum_{t=1}^{n} \ell(f_{\sigma_t,t}, y_t)$$

Switching Experts

A *switching* compound expert σ is

$$\sigma \in \{1, \ldots, N\}^n$$

At each round t it chooses expert σ_t and cumulate a loss

$$L_{\sigma,n} = \sum_{t=1}^{n} \ell(f_{\sigma_t,t}, y_t)$$

Class of switching experts $B \subseteq \{1, ..., N\}^n$ We refer to the others as base experts.

Tracking the Best Expert

Switching Experts (cont'd)

Problem: At each round *t* the learner takes the action suggested by the switching expert $\hat{\sigma}_t$, thus cumulating

$$L_n(\mathcal{A}) = \sum_{t=1}^n \ell(\mathbf{f}_{\hat{\sigma}_t, t}, y_t)$$

Problem: At each round *t* the learner takes the action suggested by the switching expert $\hat{\sigma}_t$, thus cumulating

$$L_n(\mathcal{A}) = \sum_{t=1}^n \ell(f_{\hat{\sigma}_t, t}, y_t)$$

The regret of \mathcal{A} w.r.t. switching experts in B is

$$R_n = L_n(\mathcal{A}) - \min_i L_{i,n}$$

Problem: At each round *t* the learner takes the action suggested by the switching expert $\hat{\sigma}_t$, thus cumulating

$$L_n(\mathcal{A}) = \sum_{t=1}^n \ell(f_{\hat{\sigma}_t,t}, y_t)$$

The regret of \mathcal{A} w.r.t. switching experts in B is

$$R_n = L_n(\mathcal{A}) - \min_{\sigma \in \mathcal{B}} L_{\sigma,n}$$

Problem: At each round *t* the learner takes the action suggested by the switching expert $\hat{\sigma}_t$, thus cumulating

$$L_n(\mathcal{A}) = \sum_{t=1}^n \ell(f_{\hat{\sigma}_t,t}, y_t)$$

The regret of \mathcal{A} w.r.t. switching experts in B is

$$R_n = L_n(\mathcal{A}) - \min_{\sigma \in \mathcal{B}} L_{\sigma,n}$$

Solution: use the EWA on the set of *meta*-experts *B*!

Tracking the Best Expert

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class B of switching experts achieves (with a suitable choice of η)

$$R_n = L_n(\mathcal{A}) - \min_{\sigma \in B} L_{\sigma,n} \leq \sqrt{\frac{n}{2} \log |B|}$$

Tracking the Best Expert

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class B of switching experts achieves (with a suitable choice of η)

$$R_n = L_n(\mathcal{A}) - \min_{\sigma \in B} L_{\sigma,n} \leq \sqrt{\frac{n}{2} \log |B|}$$

Problem: if $B = \{1, \dots, N\}^n$ then $|B| = N^n$ and

$$R_n \leq \sqrt{\frac{n}{2} \log |B|} = O(n)$$

 \Rightarrow sad facts of life... we cannot compete against the sequence of best experts

Question: what if we limit the *number of switches* of the switching experts to *m*?

$$s(\sigma) = \sum_{t=1}^{n} \mathbb{I} \{ \sigma_{t-1} \neq \sigma_t \}$$

Question: what if we limit the *number of switches* of the switching experts to *m*?

$$s(\sigma) = \sum_{t=1}^{n} \mathbb{I}\left\{\sigma_{t-1} \neq \sigma_{t}\right\}$$

$$B_{n,m} = \{\sigma \mid s(\sigma) \leq m\}$$

Question: what if we limit the *number of switches* of the switching experts to *m*?

$$s(\sigma) = \sum_{t=1}^{n} \mathbb{I}\left\{\sigma_{t-1} \neq \sigma_{t}\right\}$$

$$B_{n,m} = \{\sigma \mid s(\sigma) \leq m\}$$

$$|B_{n,m}| = \sum_{k=0}^m \binom{n-1}{k} N(N-1)^k \le N^{m+1} \exp\left((n-1)H\left(\frac{m}{n-1}\right)\right)$$

with $H(x) = -x \log x - (1 - x) \log(1 - x)$ is the binary entropy function.

Tracking the Best Expert

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n,m}$ of switching experts achieves (with a suitable choice of η)

$$R_n \leq \sqrt{\frac{n}{2}\left((m+1)\log N + (n-1)H\left(\frac{m}{n-1}\right)\right)}$$

Tracking the Best Expert

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n,m}$ of switching experts achieves (with a suitable choice of η)

$$R_n \leq \sqrt{\frac{n}{2}}\left((m+1)\log N + (n-1)H\left(\frac{m}{n-1}\right)\right)$$

Tracking the Best Expert

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n,m}$ of switching experts achieves (with a suitable choice of η)

$$R_n \leq \sqrt{\frac{n}{2}\left((m+1)\log N + (n-1)H\left(\frac{m}{n-1}\right)\right)}$$

Problem: not bad, but the EWA should maintain and update $|B_{n,m}|$ weights... *unfeasible*!

Tracking the Best Expert

Switching Experts (cont'd)

Corollary

In online discrete prediction, the EWA(η) run on the class $B_{n,m}$ of switching experts achieves (with a suitable choice of η)

$$R_n \leq \sqrt{\frac{n}{2}}\left((m+1)\log N + (n-1)H\left(\frac{m}{n-1}\right)\right)$$

Problem: not bad, but the EWA should maintain and update $|B_{n,m}|$ weights... *unfeasible*! **Objective**: an *efficient* EWA algorithm which maintains as many weights as the N *base* experts

Initialize the weights $w_{i,0} = 1/N$

• Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$

Initialize the weights $w_{i,0} = 1/N$

- Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$
- Randomize according to

$$I_t \sim \hat{p}_{i,t} = \frac{w_{i,t-1}f_{i,t}}{\sum_{j=1}^N w_{j,t-1}}$$

Initialize the weights $w_{i,0} = 1/N$

- Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$
- Randomize according to

$$I_t \sim \hat{p}_{i,t} = rac{w_{i,t-1}f_{i,t}}{\sum_{j=1}^N w_{j,t-1}}$$

Observe y_t

Initialize the weights $w_{i,0} = 1/N$

- Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$
- Randomize according to

$$I_t \sim \hat{p}_{i,t} = rac{w_{i,t-1}f_{i,t}}{\sum_{j=1}^N w_{j,t-1}}$$

- Observe y_t
- Suffer a loss $\ell(f_{I_t,t}, y_t)$

Initialize the weights $w_{i,0} = 1/N$

- Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$
- Randomize according to

$$I_t \sim \hat{p}_{i,t} = rac{w_{i,t-1}f_{i,t}}{\sum_{j=1}^N w_{j,t-1}}$$

- Observe y_t
- Suffer a loss $\ell(f_{I_t,t}, y_t)$
- Compute

$$\mathbf{v}_{i,t} = \mathbf{w}_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

Initialize the weights $w_{i,0} = 1/N$

- Collect experts' predictions $f_{1,t}, \ldots, f_{N,t}$
- Randomize according to

$$I_t \sim \hat{p}_{i,t} = rac{w_{i,t-1}f_{i,t}}{\sum_{j=1}^N w_{j,t-1}}$$

- Observe y_t
- Suffer a loss $\ell(f_{I_t,t}, y_t)$
- Compute

$$v_{i,t} = w_{i,t-1} \exp\left(-\eta \ell(f_{i,t}, y_t)\right)$$

• Update (with $W_t = \sum_i v_{i,t}$)

$$w_{i,t} = \alpha \frac{W_t}{N} + (1 - \alpha) v_{i,t}$$

Tracking the Best Expert

The Fixed-Share Forecaster (cont'd)

Intuition: α encodes a *belief* on the switching frequency

$$w_{i,t} = \alpha \frac{W_t}{N} + (1 - \alpha) v_{i,t}$$

Details: everything starts from a non–uniform belief over the class *B* of *all* the possible switching strategies $\sigma = (\sigma_1, \ldots, \sigma_n)$

$$w_0'(\sigma) = \frac{1}{N} \left(\frac{\alpha}{N}\right)^{s(\sigma)} \left(1 - \alpha + \frac{\alpha}{N}\right)^{n-s(\sigma)}$$

Details: everything starts from a non–uniform belief over the class *B* of *all* the possible switching strategies $\sigma = (\sigma_1, \ldots, \sigma_n)$

$$w_0'(\sigma) = \frac{1}{N} \left(\frac{\alpha}{N}\right)^{s(\sigma)} \left(1 - \alpha + \frac{\alpha}{N}\right)^{n-s(\sigma)}$$

Marginalized weights

$$w_0'(\sigma_{1:t}) = \sum_{\sigma' \in B: \sigma'_{1:t} = \sigma_{1:t}} w_0'(\sigma')$$

Details: everything starts from a non–uniform belief over the class *B* of *all* the possible switching strategies $\sigma = (\sigma_1, \ldots, \sigma_n)$

$$w_0'(\sigma) = \frac{1}{N} \left(\frac{\alpha}{N}\right)^{s(\sigma)} \left(1 - \alpha + \frac{\alpha}{N}\right)^{n-s(\sigma)}$$

Marginalized weights

$$w_0'(\sigma_{1:t}) = \sum_{\sigma' \in B: \sigma'_{1:t} = \sigma_{1:t}} w_0'(\sigma')$$

Recursive forumlation

$$w_0'(\sigma_1) = 1/N$$
$$w_0'(\sigma_{1:t+1}) = w_0'(\sigma_{1:t}) \left(\frac{\alpha}{N} + (1-\alpha)\mathbb{I}\left\{\sigma_{t+1} = \sigma_t\right\}\right)$$

The value

$$p = \frac{w_0'(\sigma_{1:t+1})}{w_0'(\sigma_{1:t})} = \frac{\alpha}{N} + (1-\alpha)\mathbb{I}\left\{\sigma_{t+1} = \sigma_t\right\}$$

is the conditional probability that a random sequence (I_1, \ldots, I_n) drawn from w'_0 has $I_{t+1} = \sigma_{t+1}$ given that $I_t = \sigma_t$

The value

$$p = \frac{w_0'(\sigma_{1:t+1})}{w_0'(\sigma_{1:t})} = \frac{\alpha}{N} + (1-\alpha)\mathbb{I}\left\{\sigma_{t+1} = \sigma_t\right\}$$

is the conditional probability that a random sequence (I_1, \ldots, I_n) drawn from w'_0 has $I_{t+1} = \sigma_{t+1}$ given that $I_t = \sigma_t$

Let $X = \{1, \dots, N\}$ be the state of a Markov chain M

•
$$\mathbb{P}[X_1 = i] = w'_0(i_1) = 1/N$$

•
$$\mathbb{P}[X_{t+1} = i | X_t = j] = \alpha / N \text{ (if } i \neq j)$$

$$\blacktriangleright \mathbb{P}[X_{t+1} = i | X_t = i] = 1 - \alpha + \alpha / N$$

⇒ The weights w'_0 encode a joint distribution of a Markov chain M such that X_1 is drawn uniformly at random and X_{t+1} is equal to the previous expert X_t with probability $1 - \alpha + \alpha/N$ and is equal to $j \neq X_t$ with probability α/N .

The value

$$p = \frac{w_0'(\sigma_{1:t+1})}{w_0'(\sigma_{1:t})} = \frac{\alpha}{N} + (1 - \alpha)\mathbb{I}\{\sigma_{t+1} = \sigma_t\}$$

is the conditional probability that a random sequence (I_1, \ldots, I_n) drawn from w'_0 has $I_{t+1} = \sigma_{t+1}$ given that $I_t = \sigma_t$

Let $X = \{1, \dots, N\}$ be the state of a Markov chain M

•
$$\mathbb{P}[X_1 = i] = w'_0(i_1) = 1/N$$

•
$$\mathbb{P}[X_{t+1} = i | X_t = j] = \alpha / N \text{ (if } i \neq j)$$

$$\blacktriangleright \mathbb{P}[X_{t+1} = i | X_t = i] = 1 - \alpha + \alpha/N$$

 \Rightarrow small α corresponds to small weight to switching experts with many switches

At round t, the weight

$$w_t'(\sigma) = w_0'(\sigma) \exp\left(\eta \sum_{s=1}^t \ell(f_{\sigma_s,t}, y_s)\right)$$

is used to randomized over *switching experts* which reduces to a randomization over *base expert*

$$w_{i,t}' = \sum_{\sigma \in B: \sigma_t = i} w_t'(\sigma)$$

with $w'_{i,t} = 1/N$.

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 77/140

Efficient Forecasters for Large Classes of Experts Tracki

Tracking the Best Expert

The Fixed-Share Forecaster (cont'd)

Theorem

The Fixed-Share Forecaster with parameters η, α has a regret w.r.t. any switching expert σ

$$R_n(\mathcal{A}) \leq \frac{\mathfrak{s}(\sigma) + 1}{\eta} \log N + \frac{1}{\eta} \log \frac{1}{(\alpha/N)^{\mathfrak{s}(\sigma)}(1-\alpha)^{n-\mathfrak{s}(\sigma)-1}} + \frac{\eta}{8}n$$

Efficient Forecasters for Large Classes of Experts

Tracking the Best Expert

The Fixed-Share Forecaster (cont'd)

Corollary

The Fixed-Share Forecaster with a suitable parameter η and $\alpha = m/(n-1)$ has a regret w.r.t. any switching expert σ with $s(\sigma) \leq m$

$$R_n(\mathcal{A}) \leq \sqrt{rac{8}{n} \Big((m+1)\log N + (n-1)Hig(rac{m}{n-1}ig)\Big)}$$

Corollary

The Fixed-Share Forecaster with a suitable parameter η and $\alpha = m/(n-1)$ has a regret w.r.t. any switching expert σ with $s(\sigma) \leq m$

$$R_n(\mathcal{A}) \leq \sqrt{rac{8}{n} \Big((m+1)\log N + (n-1)Hig(rac{m}{n-1}ig)\Big)}$$

Remark: α encodes the *frequency of switch* and it allows the algorithm to compete against $m \approx \alpha n$ switching experts.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

Tracking the Best Expert Tree Experts Shortest Path Problem Infinite Experts

\$\$ How to Make Money with Online Learning \$\$

Tree Experts

Instead of *switching* experts we now consider *tree experts*.

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 81/140

Tree Experts

Instead of *switching* experts we now consider *tree experts*.

Let's consider the discrete binary prediction case $\mathcal{Y} = \{0, 1\}$.

A. LAZARIC - An Introduction to Online Learning

Efficient Forecasters for Large Classes of Experts Tree

Tree Experts

Tree Experts (cont'd)

A binary tree

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 82/140

Efficient Forecasters for Large Classes of Experts Tree

Tree Experts

Tree Experts (cont'd)

An expert tree

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 83/140

We traverse the tree according to the past observations (in reversed order)

$$(y_{t-1}, y_{t-2}, \ldots, y_{t-d})$$

See example on the board...

Efficient Forecasters for Large Classes of Experts Tree

Tree Experts

Tree Experts (cont'd)

An expert tree E has

- Number of leaves leaves(E)
- Number of nodes ||E||
- ▶ D-size of an expert ||E||_D = ||E|| |{leaves at depthD}|

Inefficient EWA algorithm over experts

Initial weights

$$w_{E,0} = 2^{-||E||_D} N^{-|\text{leaves}(E)|}$$

Inefficient EWA algorithm over experts

Initial weights

$$w_{E,0} = 2^{-||E||_D} N^{-|\text{leaves}(E)|}$$

At round t

$$w_{E,t-1} = w_{E,0} \prod_{v \in \mathsf{leaves}(E)} w_{E,v,t-1}$$

Inefficient EWA algorithm over experts

Initial weights

$$w_{E,0} = 2^{-||E||_D} N^{-|\text{leaves}(E)|}$$

At round t

$$w_{E,t-1} = w_{E,0} \prod_{v \in \mathsf{leaves}(E)} w_{E,v,t-1}$$

Leaf weight

$$w_{E,v,t} = \begin{cases} w_{E,v,t-1} \exp\left(-\eta \ell(f_{i_E(v),t}, y_t)\right) & \text{if } v \text{ is active} \\ w_{E,v,t-1} & \text{otherwise} \end{cases}$$

Inefficient EWA algorithm over experts

Initial weights

$$w_{E,0} = 2^{-||E||_D} N^{-|\text{leaves}(E)|}$$

At round t

$$w_{E,t-1} = w_{E,0} \prod_{v \in \mathsf{leaves}(E)} w_{E,v,t-1}$$

Leaf weight

$$w_{E,v,t} = \begin{cases} w_{E,v,t-1} \exp\left(-\eta \ell(f_{i_E(v),t}, y_t)\right) & \text{ if } v \text{ is active} \\ w_{E,v,t-1} & \text{ otherwise} \end{cases}$$

Randomize over

$$p_{i,t} = \frac{\sum_{E} \mathbb{I} \{i_{E}(\mathbf{y}^{t}) = i\} w_{E,t-1}}{\sum_{E'} w_{E',t-1}}$$

Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont'd)

Theorem

The randomized EWA(η) over the set of experts of depth D satisfies for any tree expert E

$$R_n \leq \frac{||E||_D}{\eta} \log 2 + \frac{|\textit{leaves}(E)|}{\eta} \log N + \frac{\eta}{8}n$$

if η is optimized

$$R_n \leq \sqrt{n2^{D-1}\log(2N)}$$

A. LAZARIC - An Introduction to Online Learning

Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont'd)

Theorem

The randomized EWA(η) over the set of experts of depth D satisfies for any tree expert E

$$R_n \leq \frac{||E||_D}{\eta} \log 2 + \frac{|\textit{leaves}(E)|}{\eta} \log N + \frac{\eta}{8}n$$

if η is optimized

$$R_n \leq \sqrt{n2^{D-1}\log(2N)}$$

Problem: again, the number of experts of *D* maybe very large and the number of leaves even larger, so this algorithm is *infeasible*

Tree Experts

Tree Experts (cont'd)

There exists an efficient tree expert forecaster with $N(2^{D+1}-1)$ weights, which is N weights for each node of the complete binary tree of depth D.

No details here but the algorithm involves a *recursive* update of the weights of the nodes.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

Tracking the Best Expert Tree Experts Shortest Path Problem Infinite Experts

\$\$ How to Make Money with Online Learning \$\$

Directed Acyclic Graphs

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 90/140

Efficient Forecasters for Large Classes of Experts

Shortest Path Problem

Directed Acyclic Graphs

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 90/140

Directed Acyclic Graphs (cont'd)

A directed acyclic graph is

- set of edges $E = \{e_1, \ldots, e_{|E|}\}$
- set of vertices V

$$\blacktriangleright \Rightarrow e = (v_1, v_2)$$

Paths

- Start vertex u, end vertex v
- ▶ Path from *u* to *v* is $e^{(1)}, \ldots, e^{(k)}$ with $e^{(1)} = (u, v_1)$, $e^{(j)} = (v_{j-1}, v_j)$

▶ Path
$$\mathbf{i} \in \{0,1\}^{|E|}$$

Directed Acyclic Graphs (cont'd)

At each round t

- each edge e_j has a loss $\ell_{e_j,t}$
- the whole graph has $y_t = \ell_t \in [0,1]^{|E|}$
- the loss of a path i is $\ell(\mathbf{i}, y_t) = \mathbf{i} \cdot \ell_t = \sum_j \ell_{e_j, t} \mathbb{I}\{i_j = 1\}$

Directed Acyclic Graphs (cont'd)

At each round t

- each edge e_j has a loss $\ell_{e_j,t}$
- the whole graph has $y_t = \ell_t \in [0,1]^{|E|}$
- ► the loss of a path **i** is $\ell(\mathbf{i}, y_t) = \mathbf{i} \cdot \ell_t = \sum_j \ell_{e_j, t} \mathbb{I}\{i_j = 1\}$ Regret

$$R_n(\mathcal{A}) = \sum_{t=1}^n \mathbb{E}[\ell(\mathbf{I}_t, Y_t)] - \min_{\mathbf{i}} \sum_{t=1}^n \ell(\mathbf{i}_t, Y_t)$$

Efficient Forecasters for Large Classes of Experts

Shortest Path Problem

Follow the Perturbed Leader

At round t the leader is

$$\operatorname*{arg\,min}_{\mathbf{i}} \mathbf{i} \cdot \Big(\sum_{s=1}^{t-1} \ell_s\Big)$$

Follow the Perturbed Leader

At round t the leader is

$$\arg\min_{\mathbf{i}} \mathbf{i} \cdot \Big(\sum_{s=1}^{t-1} \ell_s\Big)$$

Let $\mathbf{Z}_t \in \mathbb{R}^{|E|}$ be a random variable. The perturbed leader is

$$U_t = \operatorname*{arg\,min}_{\mathbf{i}} \mathbf{i} \cdot \Big(\sum_{s=1}^{t-1} \ell_s + Z_t\Big)$$

April 2-15, 2012 - 93/140

Efficient Forecasters for Large Classes of Experts Sho

Shortest Path Problem

Follow the Perturbed Leader (cont'd)

The perturbed leader is

$$U_t = \operatorname*{arg\,min}_{\mathbf{i}} \mathbf{i} \cdot \Big(\sum_{s=1}^{t-1} \ell_s + Z_t\Big)$$

There exist efficient algorithms to find the *shortest path* in a directed acyclic graph in *linear time*.

Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Follow the Perturbed Leader (cont'd)

Theorem

Consider the follow-the-perturbed-leader with noise vectors $Z_t \in [0, \Delta]^{|E|}$. Then with probability $1 - \delta$

$$R_n \leq K\Delta + rac{nK|E|}{\Delta} + K\sqrt{rac{n}{2}\lograc{1}{\delta}}$$

with K the length of the longest path from u to v. By setting $\Delta = \sqrt{n|E|}$ we have

$$R_n \leq 2K\sqrt{n|E|} + K\sqrt{n/2\log(1/\delta)}$$

Exponentially Weighted Average for Graphs

Infeasible solution: simply list all the possible paths and consider them as experts **Efficient solution**: build the predicted path I_t by selecting edges one by one

Exponentially Weighted Average for Graphs

Edge cumulative loss

$$L_{e,t} = \sum_{s=1}^{t} \ell_{e,s}$$

Let \mathcal{P}_w the set of paths from vertex $w \in V$ to end vertex v, we define

$$\mathcal{G}_t(w) = \sum_{\mathbf{i} \in \mathcal{P}_w} \exp \Big(-\eta \sum_{e \in \mathbf{i}} \mathcal{L}_{e,t} \Big)$$

A. LAZARIC - An Introduction to Online Learning

We order the vertices as $v_1, \ldots, v_{|V|}$ so that

$$u = v_1, v = v_{|V|}$$

and if i < j then there is no edge between v_i and v_j (exploiting the structure of the directed acyclic graph).

Given the ordering, we can computed $G_t(w)$ recursively

$$G_t(v) = 1$$

If $G_t(v_i)$ has been calculated for all v_i with i = |V|, |V - 1|, ..., j + 1, then

$$G_t(v_j) = \sum_{w:(v_j,w)\in E} G_t(w) \exp\left(-\eta L_{(v_j,w),t}\right)$$

From the weights on the edge to the (random) path I_t . Start from u, then for any k = 1, ...

• Pick the vertex $v_{l_t,k}$ with probability

$$\begin{split} \mathbb{P}[\mathbf{v}_{t,k} = \mathbf{v}_{i,k} | \mathbf{v}_{t,k-1} = \mathbf{v}_{i,k-1}, \dots, \mathbf{v}_{t,0} = \mathbf{v}_{i,0}] \\ = \begin{cases} \frac{G_{t-1}(\mathbf{v}_{i,k})}{G_{t-1}(\mathbf{v}_{i,k-1})} & \text{if } (\mathbf{v}_{i,k-1}, \mathbf{v}_{i,j}) \in E \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Theorem

The efficient EWA achieves a regret

$${\mathcal{R}}_n \leq {\mathcal{K}} igg({\log M \over \eta} + {n\eta \over 8} + \sqrt{{n \over 2} \log {1 \over \delta}} igg)$$

with probability $1 - \delta$, where M is the total number of paths from u to v and K is the length of the longest path.

Theorem

The efficient EWA achieves a regret

$${\mathcal{R}}_n \leq {\mathcal{K}}\left(rac{\log M}{\eta} + rac{n\eta}{8} + \sqrt{rac{n}{2}\lograc{1}{\delta}}
ight)$$

with probability $1 - \delta$, where M is the total number of paths from u to v and K is the length of the longest path.

Comparison: the performance is much better than the perturbed leader $(O(\sqrt{n|E|}))$.

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

Tracking the Best Expert Tree Experts Shortest Path Problem Infinite Experts

\$\$ How to Make Money with Online Learning \$\$

Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment

Problem: the bounds displays a nice dependency log N, but what if the number of experts is infinite?

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 103/140

An example in sequential investment (portfolio selection)

- d stocks
- market vector $z \in \mathbb{R}^d_+$
- ▶ portfolio allocation $a \in \Delta^d$ (i.e., $a_i \in [0, 1]$ and $\sum_{i=1}^d a_i = 1$)
- ▶ the capital *W* evolves as

$$W_t = \sum_{i=1}^d \underbrace{a_t(i)W_{t-1}}_{\text{fraction on stock } i} z_t(i) = W_{t-1}a_t^\top z_t = W_0 \prod_{s=1}^t a_s^\top z_s$$

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_n(a) = W_0 \prod_{t=1}^n a^\top z_t$
- Best expert $\sup_{a \in \Delta^d} W_n(a)$
- Performance of \mathcal{A} (sequence of portfolios a_1, \ldots, a_n):

Competitive wealth ratio:
$$\frac{\sup_{a} W_n(a)}{W_n(A)}$$

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_n(a) = W_0 \prod_{t=1}^n a^\top z_t$
- Best expert $\sup_{a \in \Delta^d} W_n(a)$
- Performance of \mathcal{A} (sequence of portfolios a_1, \ldots, a_n):

Log wealth ratio:
$$\log\left(\frac{\sup_{a} W_{n}(a)}{W_{n}(A)}\right)$$

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_n(a) = W_0 \prod_{t=1}^n a^\top z_t$
- Best expert $\sup_{a \in \Delta^d} W_n(a)$
- Performance of \mathcal{A} (sequence of portfolios a_1, \ldots, a_n):

Log wealth ratio:
$$\sum_{t=1}^{n} -\log(a_t^{\top} z_t) - \inf_{a \in \Delta^d} \sum_{t=1}^{n} -\log(a^{\top} z_t)$$

- Experts: all the constantly rebalanced portfolios (i.e., constant portfolio a over n rounds)
- Expert performance $W_n(a) = W_0 \prod_{t=1}^n a^\top z_t$
- Best expert $\sup_{a \in \Delta^d} W_n(a)$
- Performance of \mathcal{A} (sequence of portfolios a_1, \ldots, a_n):

Regret:
$$\sum_{t=1}^{n} \ell(a_t, z_t) - \inf_{a \in \Delta^d} \sum_{t=1}^{n} \ell(a, z_t)$$

Continuous EWA(η) At each round *t*, switch to position

$$\mathsf{a}_t = \int_{\mathsf{a}\in\Delta^d} rac{\mathsf{w}_t(\mathsf{a})}{\mathsf{W}_t} \mathsf{a} \, \mathsf{d}\mathsf{a}$$

with

$$w_t(a) = \exp\Big(-\eta \sum_{s=1}^{t-1} \ell(a, z_s)\Big), \quad W_t = \int_a w_t(a) \, da$$

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 106/140

Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont'd)

Problem: the portfolio selection

$$\mathsf{a}_t = \int_{\mathsf{a}\in\Delta^d} rac{\mathsf{w}_t(\mathsf{a})}{\mathsf{W}_t} \mathsf{a} \, \mathsf{d}\mathsf{a}$$

is easy to write but how easy is it to compute?

Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont'd)

Problem: the portfolio selection

$$\mathsf{a}_t = \int_{\mathsf{a}\in\Delta^d} rac{\mathsf{w}_t(\mathsf{a})}{W_t} \mathsf{a}\,\mathsf{d}\mathsf{a}$$

is easy to write but how easy is it to compute? *Easy!* (or at least not too much complicated...)

Remark: notice that

$$a_t = \int_{a \in \Delta^d} rac{w_t(a)}{W_t} a \, da$$

is an integration problem with a measure $w_t(a)/W_t$ and that

$$f_t(a): a \mapsto \frac{w_t(a)}{W_t} = \frac{1}{W_t} \exp\left(-\eta \sum_{s=1}^{t-1} \ell(a, z_s)\right)$$

is a log–concave function and Δ_d is a convex set

Remark: notice that

$$a_t = \int_{a \in \Delta^d} rac{w_t(a)}{W_t} a \, da$$

is an integration problem with a measure $w_t(a)/W_t$ and that

$$f_t(a): a \mapsto \frac{w_t(a)}{W_t} = \frac{1}{W_t} \exp\left(-\eta \sum_{s=1}^{t-1} \ell(a, z_s)\right)$$

is a log–concave function and Δ_d is a convex set

 \Rightarrow we can use random walk methods which are particularly efficient

A sketch of the algorithm

Input: m, σ Average over m samples obtained as

- Start from a uniform allocation $a_0 = (1/d, \dots, 1/d)$
- Repeat for T steps
 - Choose a dimension j (i.e., a stock) at random
 - Choose a value $X \in \{-1, 1\}$ at random
 - ▶ Compute p₁ = f(a)
 - Compute $p_2 = f(a(1), \ldots, a(j) + X\sigma, \ldots, a(d) X\sigma)$
 - With probability p_1/p_2 update $a(j) = a(j) + \sigma X$ and $a(d) = a(d) \sigma X$

Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont'd)

Theorem

lf

$$m \ge O\Big(rac{n^3}{\epsilon^2}\lograc{dn}{\delta}\Big)$$
 $S \ge O\Big(rac{d}{\sigma^2}\lograc{d}{\epsilon\sigma}\Big)$

then random walk algorithm performs $(1 - \epsilon)$ times as well as the exact algorithm with probability $1 - \delta$.

Efficient Forecasters for Large Classes of Experts

Infinite Experts

Extension to Infinite Experts

Theorem

Given a convex loss bounded in [0,1], for any $\gamma > 0$, the (exact) Continuous EWA(η) achieves a regret

$$R_n \leq rac{d\lograc{1}{\gamma}}{\eta} + rac{n\eta}{8} + \gamma n$$

By setting $\gamma = 1/n$ and $\eta = 2\sqrt{2d \log n/n}$ then

$$R_n \leq 1 + \sqrt{\frac{dn\log n}{2}}$$

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

nría

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 112/140

The Betting Problem

Disclaimer

Neither the authors nor the lecturer are responsible for any inappropriate use of the techniques presented in this course.

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 113/140

The Betting Problem

The problem: Predict the outcome of a game using the odds from the bookmakers.

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 114/140

Glossary

- Bookmaker (bookie): The company organizing the gambling
- Odds: Bookmaker's view of the chance of a competitor winning (adjusted to include a profit).
- Stake: The money you bet.
- Overround: Profit margin in the bookmaker's favor.

Glossary (cont'd)

Theoretical (in favor) odds

Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 116/140

Glossary (cont'd)

Theoretical (in favor) odds

Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?

Answer: 2/13 (2:13)

Glossary (cont'd)

Theoretical (in favor) odds

Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?

Answer: 2/13 (2:13)

Definition:

 $odd = \frac{prob. in favor}{prob. against}$

Source: wikipedia

Glossary (cont'd)

Theoretical (in favor) odds

Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?

Answer: 2/13 (2:13)

Definition:

$$a = \frac{p}{1-p}$$

Source: wikipedia

Glossary (cont'd)

Theoretical (in favor) odds

Example: There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking one blue marble?

Answer: 2/13 (2:13)

Definition:

$$a = \frac{p}{1-p}$$

If p = 0.2, the odds are a = 0.25, and represent the stake necessary to *win one unit (plus the bet) on a successful wager* when offered fair odds.

Odds a = 0.25 correspond to *fractional odds* are 4 to 1 (4:1), in *decimal odds* are 5.0.

Source: wikipedia

Glossary (cont'd)

Theoretical (against) odds

$$a = \frac{1-p}{p}$$

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 117/140

Glossary (cont'd)

Theoretical (against) odds

$$a = \frac{1-p}{p}$$

In the previous example: What are the odds *against* picking one blue marble? 13:2

Glossary (cont'd)

Gambling odds

- Bookmaker's odds include a profit margin, the over-round.
- Example: In a 3-horse race, let 50%, 40% and 10% be the *true* probabilities (odds 5-5, 6-4 and 9-1). The bookmaker may increase the values to 60%, 50% and 20% (odds 4-6, 5-5 and 4-1). These values total 130, meaning that the book has an *overround of 30*.

Glossary (cont'd)

From odds to probabilities:

- K possible outcomes
- K odds a_1, \ldots, a_K
- Probabilities

$$p_k = \frac{1/a_k}{\sum_{k'=1}^K 1/a_{k'}}$$

The Brier's Game

- Outcome space: possible results
- Decision space: probability distribution
- Set of experts: bookmakers
- ► Loss function: quadratic loss on the probability distribution

The Brier's Game

- Outcome space: $\mathcal{Y} = \{1, \dots, K\}$
- Decision space: $\mathcal{D} = \mathbb{P}(\mathcal{Y})$
- ▶ Set of experts: 1,..., N
- Loss function:

$$\ell(y, \hat{\mathbf{p}}) = \sum_{k=1}^{K} (\hat{p}(k) - \delta_y(k))^2$$

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 120/140

The Brier's Game

At each round t

Expert *i* predicts a distribution over outcomes **p**_{*i*,*t*}

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 121/140

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes p_{i,t}
- Learner predicts a distribution over outcomes $\hat{\mathbf{p}}_t$

nría

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes p_{i,t}
- Learner predicts a distribution over outcomes $\hat{\mathbf{p}}_t$
- Reality announces the outcome y_t

The Brier's Game

At each round t

- Expert i predicts a distribution over outcomes p_{i,t}
- Learner predicts a distribution over outcomes $\hat{\mathbf{p}}_t$
- Reality announces the outcome y_t
- Learner incurs a loss $\ell(y_t, \hat{\mathbf{p}}_t)$

Strong Aggregating Algorithm

Initialize the weights $w_{i,0} = 1$

Record the experts' predictions p_{i,t}

Strong Aggregating Algorithm

Initialize the weights $w_{i,0} = 1$

- Record the experts' predictions p_{i,t}
- Compute

$$G_t(y) = -\log\Big(\sum_{i=1}^N w_{i,t-1}\exp(-\ell(y,\mathbf{p}_{i,t}))\Big)$$

Strong Aggregating Algorithm

Initialize the weights $w_{i,0} = 1$

Record the experts' predictions p_{i,t}

Compute

$$G_t(y) = -\log\Big(\sum_{i=1}^N w_{i,t-1}\exp(-\ell(y,\mathbf{p}_{i,t}))\Big)$$

• Solve
$$\sum_{y}(s - G_t(y))^+ = 2$$
 with $s \in \mathbb{R}$

Strong Aggregating Algorithm

Initialize the weights $w_{i,0} = 1$

- Record the experts' predictions $\mathbf{p}_{i,t}$
- Compute

$$G_t(y) = -\log\Big(\sum_{i=1}^N w_{i,t-1}\exp(-\ell(y,\mathbf{p}_{i,t}))\Big)$$

Solve
$$\sum_{y} (s - G_t(y))^+ = 2$$
 with $s \in \mathbb{R}$

• Set $\hat{p}_t(k) = (s - G_t(k))^+/2$ for any $k \in \mathcal{Y}$

Strong Aggregating Algorithm

Initialize the weights $w_{i,0} = 1$

- Record the experts' predictions p_{i,t}
- Compute

ría

$$G_t(y) = -\log\Big(\sum_{i=1}^N w_{i,t-1}\exp(-\ell(y,\mathbf{p}_{i,t}))\Big)$$

- Solve $\sum_{y}(s G_t(y))^+ = 2$ with $s \in \mathbb{R}$
- Set $\hat{p}_t(k) = (s G_t(k))^+/2$ for any $k \in \mathcal{Y}$

• Predict
$$\hat{\mathbf{p}}_t$$
 and observe y_t

Strong Aggregating Algorithm

Initialize the weights $w_{i,0} = 1$

- Record the experts' predictions p_{i,t}
- Compute

nín.

$$G_t(y) = -\log\Big(\sum_{i=1}^N w_{i,t-1}\exp(-\ell(y,\mathbf{p}_{i,t}))\Big)$$

- Solve $\sum_{y}(s G_t(y))^+ = 2$ with $s \in \mathbb{R}$
- Set $\hat{p}_t(k) = (s G_t(k))^+/2$ for any $k \in \mathcal{Y}$
- Predict $\hat{\mathbf{p}}_t$ and observe y_t

• Update
$$w_{i,t} = w_{i,t-1} \exp(-\ell(y, \mathbf{p}_{i,t}))$$

Strong Aggregating Algorithm

A rough explanation

- ► exp(-ℓ(y, p_{i,t})) is the "loss" suffered by i if the outcome will be y
- ► G_t(y) is a mixing function of the the *potential* losses using weights ws
- We search for a mapping function Σ which takes G and returns valid predictions such that

 $\ell(y, \Sigma(G)) \leq G(y)$

Strong Aggregating Algorithm

Theorem

The strong aggregating algorithm on the Brier's game achieves a cumulative loss

$$L_n(\mathcal{A}) \leq \min_{1 \leq i \leq N} L_{i,n} + \log N$$

A. LAZARIC - An Introduction to Online Learning

Strong Aggregating Algorithm

Theorem

The strong aggregating algorithm on the Brier's game achieves a cumulative loss

$$L_n(\mathcal{A}) \leq \min_{1 \leq i \leq N} L_{i,n} + \log N$$

Remark: and no algorithm can do better!

Empirical Results

Available at: http://vovk.net/ICML2008/

A. LAZARIC – An Introduction to Online Learning

April 2-15, 2012 - 125/140

Empirical Results

Available at: http://vovk.net/ICML2008/ Database football

- ▶ 8999 matches in English football competitions over 4 years
- Outcomes: {home win, draw, away win}
- ▶ 8 Bookmakers (Bet365, Bet&Win, ...)

Empirical Results

Available at: http://vovk.net/ICML2008/ Database football

- ▶ 8999 matches in English football competitions over 4 years
- Outcomes: {home win, draw, away win}
- 8 Bookmakers (Bet365, Bet&Win, ...)

Database tennis

- 10,087 matches in different tournaments over 4 years
- Outcomes: {player1 win, player2 win}
- 4 Bookmakers (Bet365, Bet&Win, ...)

Empirical Results

Available at: http://vovk.net/ICML2008/ Database football

- ▶ 8999 matches in English football competitions over 4 years
- Outcomes: {home win, draw, away win}
- ▶ 8 Bookmakers (Bet365, Bet&Win, ...)

Database tennis

- 10,087 matches in different tournaments over 4 years
- Outcomes: {player1 win, player2 win}
- 4 Bookmakers (Bet365, Bet&Win, ...)

Pre-processing: from odds to probabilities

$$p(k) = a(k)^{-\gamma}$$

where γ is related to the overround.

Empirical Results: football

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 126/140

Empirical Results: tennis

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 127/140

Empirical Results: comparisons

Question: Independently from the theory is the SAA really good compared to other algorithms?

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 128/140

Empirical Results: comparisons

Question: Independently from the theory is the SAA really good compared to other algorithms?

- Weighted average: the same as SSA but no function G
- Hedge (EWA)
- Weak aggregating

Empirical Results: comparisons

Football results

Algorithm	Maximal Difference	Theoretical Bound
Aggregating	1.1562	2.0794
Weighted Average	1.8697	16.6355
Hedge	4.5662	234.1159
Weak Aggregating	2.4755	464.0728

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 129/140

Empirical Results: comparisons

Tennis results

Algorithm	Maximal Difference	Theoretical Bound
Aggregating	1.2021	1.3863
Weighted Average	3.0566	11.0904
Hedge	9.0598	237.8904
Weak Aggregating	3.6101	473.0083

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 130/140

Empirical Results: comparisons

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 131/140

Empirical Results: comparisons

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 132/140

Empirical Results: comparisons

Other observations

- SAA is able to (explicitly) *exploit* the shape of the *loss* function
- Other algorithms are *less aware* of the loss function
- Experiments (not reported) on other algorithms, show that non-theoretically guaranteed algorithms *do not perform that poorly* but are much *less robust*

A. LAZARIC - An Introduction to Online Learning

Discussion

- Is it possible to add side information?
- Is it the minimization of the regret wrt the best expert our real goal?
- Is it possible to merge model-based prediction and expert-based prediction?

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

\$\$ How to Make Money with Online Learning \$\$

Conclusions

nnía

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 135/140

Other Online Learning Algorithms

- Follow-the-regularized leader
- The perceptron
- Proximal point algorithm
- Exponentiated gradient algorithms
- Mirror decent
- Passive-agressive algorithm

▶ ...

Other Online Learning Settings

- Online learning with partial monitoring
- Label-efficient learning
- Online learning in games
- Online binary classification
- Specific losses
- Contextual learning
- Hybrid stochastic-adversarial models

Applications of Online Learning

- Stock market prediction (universal portfolio)
- Betting strategies
- Ozone ensamble prediction
- Online email categorization
- Speech-to-text and Music-to-score Alignement

▶ ..

Things to Remember

A. LAZARIC - An Introduction to Online Learning

April 2-15, 2012 - 139/140

Learning when *data* are coming *in a stream* is a very relevant problem

- Learning when *data* are coming *in a stream* is a very relevant problem
- Online learning is about algorithms which are *robust* enough to working well in *any case*

- Learning when *data* are coming *in a stream* is a very relevant problem
- Online learning is about algorithms which are *robust* enough to working well in *any case*
- In the expert advice model we can leverage on many experts of any kind

- Learning when *data* are coming *in a stream* is a very relevant problem
- Online learning is about algorithms which are *robust* enough to working well in *any case*
- In the expert advice model we can leverage on many experts of any kind
- The EWA is a very flexible algorithm for both continuous and discrete prediction

- Learning when *data* are coming *in a stream* is a very relevant problem
- Online learning is about algorithms which are *robust* enough to working well in *any case*
- In the expert advice model we can leverage on many experts of any kind
- The EWA is a very flexible algorithm for both continuous and discrete prediction
- Theory gives you worst-case guarantees on the algorithm performance

- Learning when *data* are coming *in a stream* is a very relevant problem
- Online learning is about algorithms which are *robust* enough to working well in *any case*
- In the expert advice model we can leverage on many experts of any kind
- The EWA is a very flexible algorithm for both continuous and discrete prediction
- Theory gives you worst-case guarantees on the algorithm performance
- Many potential applications and *it works*

Advanced Topics in Machine Learning Part II: An Introduction to Online Learning

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr