
April 2-15, 2012

Advanced Topics in Machine Learning
Part II: An Introduction to Online Learning
A. LAZARIC (INRIA-Lille)

DEI, Politecnico di Milano

SequeL – INRIA Lille



Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

$$ How to Make Money with Online Learning $$

Conclusions

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 2/140



Introduction

Outline

Introduction
The Online Prediction Game
Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

$$ How to Make Money with Online Learning $$

Conclusions

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 3/140



Introduction The Online Prediction Game

Outline

Introduction
The Online Prediction Game
Binary Sequence Prediction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

$$ How to Make Money with Online Learning $$

Conclusions

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 4/140



Introduction The Online Prediction Game

Online Learning

The prediction problem
I What will be the rain precipitation next month?

I What will be the price of this stock tomorrow?
I How many iPad will be sold next quarter?
I How many contacts will have this webpage in the next hour?
I ...
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Introduction The Online Prediction Game

Online Learning vs Statistical Learning

Limitations of Statistical Learning
I Reality is not stochastic
I Data are often arriving in a sequence
I Training and testing are rarely separated
I Massive datasets must be provided in a stream
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Introduction The Online Prediction Game

Online Learning vs Statistical Learning (cont’d)

SL OL
Samples Batch In a stream
Assumptions Stochastic model Individual sequence
Analysis Average case Worst case
Performance Excess risk Regret
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Introduction The Online Prediction Game

The Prediction Game

The environment
I Outcome space Y

The learner
I Decision (prediction) space D

The performance
I Loss function `(p, y) with y ∈ Y and p ∈ D
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Introduction The Online Prediction Game

The Prediction Game (cont’d)

At each round t = 1, . . . , n

(not necessarily finite time)
I At the same time

I The environment chooses an outcome yt ∈ Y
I The learner chooses a prediction p̂t ∈ D

I The learner suffers a loss `(p̂t , yt)

I The environment reveals yt
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction

Problem: predict (online) the next bit in an arbitrary string of bits
I Y = D = {0, 1}
I `(p, y) = I {y 6= p}
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction (cont’d)

Doubt: I do not know anything about where this string is coming
from... and I am not an expert of strings of bits...

Solution: ask to experts!
I N experts
I Each returning a prediction fi ,t ∈ D (i = 1, . . . ,N)
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction (cont’d)

Simple case: one of my experts perfectly knows the sequence

∃i , ∀t, `(yt , fi ,t) = 0

Simple algorithm the Halving algorithm (a.k.a. “there can be
only one!”):
Initialize the weights wi ,0 = 1

I Collect all the experts’ predictions fi ,t
I Take p̂t = 1 if the majority of experts with wi = 1 suggests 1,

0 otherwise
I Observe yt
I Set wi = 0 for all the fi ,t 6= yt
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction (cont’d)

Question: how many mistakes does this algorithm make?
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction (cont’d)
Let Wm be the total number of active experts after m mistakes.

I At the beginning m = 0 and W0 = N. [algorithm]
I At each mistake, at least half of the active experts were wrong and

then removed: [algorithm]

Wm ≤
Wm−1

2
I Applying the previous relationship recursively [math]

Wm ≤
Wm−1

2 ≤ Wm−2
4 ≤ . . . ≤ W0

2m

I According to the “simple case”, after m there will always at least
one expert still active [assumption]

Wm ≥ 1
I Putting together [math]

W0
2m ≥ 1⇒ m ≤ blog2 Nc
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction (cont’d)

Theorem
For any binary sequence y1, . . . , yt , . . ., we consider a halving
algorithm on N experts. If one experts makes no mistake over the
sequence, then

m ≤ blog2 Nc
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Introduction Binary Sequence Prediction

A “Gentle” Start: Binary Sequence Prediction (cont’d)

Theorem
For any binary sequence y1, . . . , yt , . . ., we consider a halving
algorithm on N experts. If one experts makes no mistake over the
sequence, then

m ≤ blog2 Nc

I No stochastic assumption!
I No high–probability result!
I Finite number of mistakes for ANY possible sequence!
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Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction

I Outcome space Y is arbitrary
I Decision space D is a convex subset of Rs

I Loss function `(p, y)
I bounded (` : D × Y → [0, 1])
I convex in the first argument (`(·, y) is convex for any y ∈ Y)
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Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction (cont’d)

I Experts f1,t , . . . , fN,t

I The performance measure: the (expert) regret

Rn =
n∑

t=1
`(p̂t , yt)− min

1≤i≤N

n∑
t=1

`(fi ,t , yt)
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Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction (cont’d)

I Experts f1,t , . . . , fN,t

I The performance measure: the (expert) regret

Rn =
n∑

t=1
`(p̂t , yt)︸ ︷︷ ︸

alg. cumul. loss

− min
1≤i≤N

n∑
t=1

`(fi ,t , yt)︸ ︷︷ ︸
expert i cumul. loss
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Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction (cont’d)

I Experts f1,t , . . . , fN,t

I The performance measure: the (expert) regret

Rn =
n∑

t=1
`(p̂t , yt)︸ ︷︷ ︸

alg. cumul. loss

− min
1≤i≤N

n∑
t=1

`(fi ,t , yt)︸ ︷︷ ︸
best expert in hindsight
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Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction (cont’d)

I Expert cumulative loss on the sequence yn = (y1, . . . , yn)

Li ,n(yn) =
n∑

t=1
`(fi ,t , yt)

I Algorithm A cumulative loss

Ln(A; yn) =
n∑

t=1
`(p̂t , yt)

I Regret
Rn = Ln(A; yn)−min

i
Li ,n(yn)

Objective: find an alg. with small regret for any sequence yn
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Continuous Prediction with Expert Advice: the EWA The Continuous Prediction Game

Continuous Prediction (cont’d)

The definition of expert is so general that almost anything fits:

I fi ,t can be a function of a context x ⇒ adaptive experts
I fi ,t can change over time ⇒ learning experts
I fi ,t is arbitrary ⇒ experts can even form a coalition against

the learner
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Continuous Prediction with Expert Advice: the EWA The Exponentially Weighted Average Forecaster

The Exponentially Weighted Average Forecaster

Initialize the weights wi,0 = 1
I Collect experts’ predictions f1,t , . . . , fN,t

I Predict (Wt−1 =
∑N

i=1 wi,t−1)

p̂t =

∑N
i=1 wi,t−1fi,t

Wt−1

I Observe yt

I Suffer a loss `(p̂t , yt)

I Update

(the weights are the exponential cumulative losses)

wi,t = wi,t−1 exp
(
− η`(fi,t , yt)

)

Implement.: store and update the normalized weights ŵi,t = wi,t/Wt .
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A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 27/140



Continuous Prediction with Expert Advice: the EWA The Exponentially Weighted Average Forecaster

The Exponentially Weighted Average Forecaster

Initialize the weights wi,0 = 1
I Collect experts’ predictions f1,t , . . . , fN,t

I Predict (Wt−1 =
∑N

i=1 wi,t−1)

p̂t =

∑N
i=1 wi,t−1fi,t

Wt−1

I Observe yt

I Suffer a loss `(p̂t , yt)

I Update (the weights are the exponential cumulative losses)

wi,t = wi,t−1 exp
(
− η`(fi,t , yt)

)
Implement.: store and update the normalized weights ŵi,t = wi,t/Wt .
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Continuous Prediction with Expert Advice: the EWA The Exponentially Weighted Average Forecaster

The Exponentially Weighted Average Forecaster (cont’d)

Theorem
If D is a convex decision space and the loss function is bounded
and convex in the first argument, then on any sequence yn,
EWA(η) satisfies

Rn = Ln(A; yn)−min
i

Li ,n(yn) ≤ log N
η

+
ηn
8 .
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Continuous Prediction with Expert Advice: the EWA The Exponentially Weighted Average Forecaster

The Exponentially Weighted Average Forecaster (cont’d)

The proof is divided in three steps.
Step 1: a lower bound on the log-ratio of cumulative weights

log Wn+1
W1

= log Wn+1 − log W1 = log
( N∑

i=1
wi,n+1

)
− log N

≥ log
(

max
1≤i≤N

wi,n+1

)
− log N

= −η min
1≤i≤N

n∑
t=1

`(fi,t , yt)− log N
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Continuous Prediction with Expert Advice: the EWA The Exponentially Weighted Average Forecaster

The Exponentially Weighted Average Forecaster (cont’d)

Step 2: an upper bound on the log-ratio of cumulative weights

log Wt+1
Wt

= log
( N∑

i=1

wi,t
Wt

exp
(
− η`(fi,t , yt)

))

= log
(
E exp

(
− η`(fIt ,t , yt)

))
(with P(It = i) = wi,t/Wt)

≤ −ηE`(fI,t , yt) +
η2

8 (Hoeffding’s lemma)

≤ −η`(EfI,t , yt) +
η2

8 (Jensen’s inequality)

= −η`(p̂t , yt) +
η2

8
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Continuous Prediction with Expert Advice: the EWA The Exponentially Weighted Average Forecaster

The Exponentially Weighted Average Forecaster (cont’d)

Step 3: joint upper and lower bounds
Notice that log Wn+1

W1
=
∑n

t=1 log Wt+1
Wt

∑n
t=1 log Wt+1

Wt

− η min
1≤i≤N

n∑
t=1

`(fi,t , yt)− log N ≤
∑n

t=1 log Wt+1
Wt
≤

n∑
t=1

(
− η`(p̂t , yt) +

η2

8

)
− η min

1≤i≤N
Li,n − log N ≤−ηLn(A) + nη2

8

The statement follows by reordering the terms.
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Continuous Prediction with Expert Advice: the EWA Parameter Tuning

Parameter Tuning

Tuning: how should we tune the parameter η?

wi ,t = wi ,t−1 exp
(
− η`(fi ,t , yt)

)

I Big η = aggressive algorithm: converge fast to one expert but
it could be wrong

I Small η = conservative algorithm: does not converge to the
wrong expert but it could take a long time
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Continuous Prediction with Expert Advice: the EWA Parameter Tuning

Parameter Tuning (cont’d)

Tuning: how should we tune the parameter η?

wi ,t = wi ,t−1 exp
(
− η`(fi ,t , yt)

)

Rn(EWA) ≤ log N
η︸ ︷︷ ︸

big!

+
ηn
8︸︷︷︸

small!
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Continuous Prediction with Expert Advice: the EWA Parameter Tuning

Parameter Tuning (cont’d)

Tuning: If we know the horizon n, then by setting η =
√

8 log N
n

Rn(EWA) ≤
√

n
2 log N

I Logarithmic dependency on N

⇒ add many experts, no problem!
I Per–step regret Rn/n =

√
1/n→ 0

⇒ EWA is asymptotically as good as the best expert!
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Continuous Prediction with Expert Advice: the EWA Parameter Tuning

Parameter Tuning (cont’d)

Problem: Sometimes n is unknown (or it does not exist at all)

Solution: set ηt = 2
√

log N
t and

Rn(EWA) ≤
√

n log N
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Continuous Prediction with Expert Advice: the EWA Parameter Tuning

A Comparison with SLT results

Bound for batch binary classification with N hypotheses on data
i.i.d. from P

R(ĥ;P)− R(h∗;P) ≤ O
(√ log N/δ

n

)
if the observations are i.i.d. from a stationary distribution P

Bound for online binary classification with N experts on any
sequence yn
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Continuous Prediction with Expert Advice: the EWA Bounds for Small Losses
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Continuous Prediction with Expert Advice: the EWA Bounds for Small Losses

An Alternative Bound (for Small Losses)

Question: What if the best expert is really good? (i.e.,
L∗n = mini Li ,n is small)
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Continuous Prediction with Expert Advice: the EWA Bounds for Small Losses

An Alternative Bound (for Small Losses) (cont’d)

Theorem
If D is a convex decision space and the loss function is bounded
and convex in the first argument. Let L∗n = mini Li ,n, then on any
sequence yn, EWA(η) satisfies

Ln(A) ≤ ηL∗n + log N
1− exp−η
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Continuous Prediction with Expert Advice: the EWA Bounds for Small Losses

An Alternative Bound (for Small Losses) (cont’d)

Corollary
If η = 1 (aggressive algorithm)

Ln(A) ≤ e
e − 1

(
L∗n + log N

)
= L∗n +

1
e − 1L∗n +

e
e − 1 log N

I If L∗n is small (i.e., L∗n �
√

n) it is much better than the
previous bound

I If L∗n is not small (i.e., L∗n >
√

n) it is much worse than the
previous bound

I If L∗n = 0 we have (almost) the same performance as the
Halving algorithm
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Continuous Prediction with Expert Advice: the EWA Bounds for Small Losses

An Alternative Bound (for Small Losses) (cont’d)

Corollary
If we optimally tune η = log(1 +

√
(2 log N)/L∗n)

Ln(A) ≤ L∗n +
√

2L∗n log N + log N

Problem: the performance of the best expert is usually not
known...

Algorithm adapting to the complexity of the problem?

Almost... (see NIPS this year)
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction

I Outcome space Y is discrete (with |Y | ≥ 2)
I Decision space D = Y
I Loss function `(p, y) = I {p 6= y}
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

I Experts f1,t , . . . , fN,t

I The performance measure: the (expert) regret

Rn =
n∑

t=1
`(p̂t , yt)− min

1≤i≤N

n∑
t=1

`(fi ,t , yt)
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Remark: everything is almost the same as in the continuous
prediction, so it should be easy!

No
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Example: Two experts: f1,t = 0 and f2,t = 1 at any t, then

I For any sequence yn = (y1, . . . , yn) ∈ {0, 1}n, there exists an
experts i such that

Li ,n =
n∑

t=1
`(fi ,t , yt) ≥ n/2

I For any algorithm A, there exists a sequence yn(A) such that

Ln(A) =
n∑

t=1
`(p̂t , yt(A)) = n
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Let’s (adversarially) construct the sequence yn(A).
I At time 1, the adversary sets y1(A) = 1− p̂1 (for a fixed

algorithm A this is always possible)

I At time t, the algorithm chooses p̂t on the basis of
(y1(A), . . . , yt−1(A)) (in a predictable way)

I At time t, the adversary sets yt(A) = 1− p̂t
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Theorem
In the discrete prediction problem, for any deterministic algorithm
A, the worst case regret is

Rn(A) ≥ n
2

Solution: let’s randomize!
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Problem: how do we randomize over experts without loosing in
performance?

Solution: use the Exponentially Weighted Average forecaster!
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

We first construct a fictitious continuous prediction problem where
we can apply the EWA:

I D′ = {p ∈ [0, 1]N :
∑N

i=1 pi = 1} ⇒ convex

I Y ′ = Y ×DN

I `′(p, (y , f1, . . . , fN)) =
∑N

i=1 pi`(fi , y) ⇒ convex and bounded
I f ′i ,t = ei , with ei = (0, . . . , 0, 1, 0, . . . , 0)> with i-th coordinate

equal to 1
I y ′t = (yt , f1,t , . . . , fN,t)
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

We notice that

`′(f ′i ,t , y ′t) = `′(ei , (yt , f1,t , . . . , fN,t)) = `(fi ,t , yt)

Thus

Li ,t =
t∑

s=1
`(fi ,s , ys) =

t∑
s=1

`′(f ′i ,s , y ′s)
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

At each round t of the fictitious continuos problem the algorithm
returns

p̂t = (p̂1,t , . . . , p̂N,t)

At each round t of the real discrete problem the algorithm returns
(at random)

It ∼ p̂t = (p̂1,t , . . . , p̂N,t)

and in expectation

E[`(fIt , yt)] =
N∑

t=1
p̂i ,t`(fi ,t , yt) = `′(p̂t , (yt , f1,t , . . . , fN,t)) = `′(p̂t , y ′t)
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

The performance is

L′n(A) =
n∑

t=1
`′(p̂t , y ′t) = E

[ n∑
t=1

`(fIt ,t , yt)
]

= E[Ln(A)]
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Discrete Continuous
`(fi , y) `′(p, y ′) =

∑N
i=1 pi`(fi , y)

`(fi ,t , yt) `′(f ′i ,t , y ′t)

cumulative losses coincide

E[`(fIt , yt)] `′(p̂t , y ′t)

coincide in expectation

E[Ln(A)] L′n(A)

coincide in expectation
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Theorem
If D′ is a convex decision space and the loss function `′ is bounded
and convex in the first argument, then on any sequence y′n,
EWA(η) satisfies

R ′n = L′n(A; y′n)−min
i

L′i ,n(y′n) ≤ log N
η

+
ηn
8 .
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Theorem
If D is a is a discrete space and ` is any loss function, then on any
sequence y′n, EWA(η) satisfies
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Theorem
If D = Y are discrete spaces and ` is any loss function, then on
any sequence y′n, the randomized EWA(η) satisfies

E[Rn] = E[Ln(A; y′n)]−min
i

Li ,n(y′n) ≤ log N
η

+
ηn
8 .

and

E[Rn] = E[Ln(A; y′n)]−min
i

Li ,n(y′n) ≤
√

n
2 log N.

if η is properly tuned.

Problem: interesting but this holds only on average, does it mean
that from time to time the algorithm can perform arbitrarily bad?

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 58/140



Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Theorem
If D = Y are discrete spaces and ` is any loss function, then on
any sequence y′n, the randomized EWA(η) satisfies

E[Rn] = E[Ln(A; y′n)]−min
i

Li ,n(y′n) ≤ log N
η

+
ηn
8 .

and

E[Rn] = E[Ln(A; y′n)]−min
i

Li ,n(y′n) ≤
√

n
2 log N.

if η is properly tuned.

Problem: interesting but this holds only on average, does it mean
that from time to time the algorithm can perform arbitrarily bad?

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 58/140



Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Solution: do you remember the Chernoff-Hoeffding bound?

P
[ n∑

t=1
Xt −

n∑
t=1

E[Xt ] > ε
]
≤ exp

(
− 2ε2/n

)

⇒

P
[ n∑

t=1
`(fIt ,t , yt)−

n∑
t=1

E[`(fIt ,t , yt)] > ε
]
≤ exp

(
− 2ε2/n

)
⇒

P
[
Ln(A)− E[Ln(A)] > ε

]
≤ exp

(
− 2ε2/n

)
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Discrete Prediction with Expert Advice: the EWA The Discrete Prediction Game

Discrete Prediction (cont’d)

Theorem
If D = Y are discrete spaces and ` is any loss function, then on
any sequence y′n, the randomized EWA(η) satisfies

Rn = Ln(A; yn)−min
i

Li ,n(yn) ≤
√

n
2 log N +

√
n
2 log 1

δ

with probability 1− δ.
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Discrete Prediction with Expert Advice: the EWA A Note on Lower Bounds

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA
The Discrete Prediction Game
A Note on Lower Bounds

Efficient Forecasters for Large Classes of Experts

$$ How to Make Money with Online Learning $$

Conclusions
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Discrete Prediction with Expert Advice: the EWA A Note on Lower Bounds

Lower Bounds

Question: EWA(η) seems good but I am sure that my algorithm
can do better !

Answer: don’t even try... EWA is the best possible algorithm!
Informally:

inf
A

sup
yn

Rn(A; yn) ≥
√

n
2 log N

for some losses...
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Discrete Prediction with Expert Advice: the EWA A Note on Lower Bounds

Lower Bounds (cont’d)

Mixable

Exp-concave

Bounded Convex

I Bounded and convex: EWA is optimal with regret O(
√

n log N)

I Mixable: optimal regret c log N but not (always) achieved EWA
I Exp-concave: EWA is optimal with regret c log N
I Non-convex: EWA is optimal in discrete prediction
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Efficient Forecasters for Large Classes of Experts
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A Remark on the Regret

Rn = Ln(A)−min
i

Li ,n

Remark: algorithm competes against the best fixed expert
Problem: what if the good expert changes over time?
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A Remark on the Regret (cont’d)

Question: why do not design an algorithm to compete against the
best changing expert?

Rn =
n∑

t=1
`(p̂t , yt)−min

i

n∑
t=1

`(fi ,t , yt)
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A Remark on the Regret (cont’d)

Question: why do not design an algorithm to compete against the
best changing expert?
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

Switching Experts

A switching compound expert σ is

σ ∈ {1, . . . ,N}n

At each round t it chooses expert σt and cumulate a loss

Lσ,n =
n∑

t=1
`(fσt ,t , yt)

Class of switching experts B ⊆ {1, . . . ,N}n
We refer to the others as base experts.

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 68/140



Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

Switching Experts

A switching compound expert σ is

σ ∈ {1, . . . ,N}n

At each round t it chooses expert σt and cumulate a loss

Lσ,n =
n∑

t=1
`(fσt ,t , yt)

Class of switching experts B ⊆ {1, . . . ,N}n
We refer to the others as base experts.

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 68/140



Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

Switching Experts

A switching compound expert σ is

σ ∈ {1, . . . ,N}n

At each round t it chooses expert σt and cumulate a loss

Lσ,n =
n∑

t=1
`(fσt ,t , yt)

Class of switching experts B ⊆ {1, . . . ,N}n
We refer to the others as base experts.

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 68/140



Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

Switching Experts (cont’d)

Problem: At each round t the learner takes the action suggested
by the switching expert σ̂t , thus cumulating

Ln(A) =
n∑

t=1
`(fσ̂t ,t , yt)

The regret of A w.r.t. switching experts in B is

Solution: use the EWA on the set of meta-experts B!
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

Switching Experts (cont’d)

Corollary
In online discrete prediction, the EWA(η) run on the class B of
switching experts achieves (with a suitable choice of η)

Rn = Ln(A)−min
σ∈B

Lσ,n ≤
√

n
2 log |B|

Problem: if B = {1, . . . ,N}n then |B| = Nn and

Rn ≤
√

n
2 log |B| = O(n)

⇒ sad facts of life... we cannot compete against the sequence of
best experts
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

Switching Experts (cont’d)

Question: what if we limit the number of switches of the
switching experts to m?

s(σ) =
n∑

t=1
I {σt−1 6= σt}

Bn,m = {σ| s(σ) ≤ m}

|Bn,m| =
m∑

k=0

(
n − 1

k

)
N(N − 1)k ≤ Nm+1 exp

(
(n − 1)H

( m
n − 1

))
with H(x) = −x log x − (1− x) log(1− x) is the binary entropy
function.
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Switching Experts (cont’d)

Corollary
In online discrete prediction, the EWA(η) run on the class Bn,m of
switching experts achieves (with a suitable choice of η)

Rn ≤

√
n
2

(
(m + 1) log N + (n − 1)H

( m
n − 1

))

Problem: not bad, but the EWA should maintain and update
|Bn,m| weights... unfeasible!
Objective: an efficient EWA algorithm which maintains as many
weights as the N base experts
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster

Initialize the weights wi,0 = 1/N
I Collect experts’ predictions f1,t , . . . , fN,t

I Randomize according to

It ∼ p̂i,t =
wi,t−1fi,t∑N
j=1 wj,t−1

I Observe yt

I Suffer a loss `(fIt ,t , yt)

I Compute
vi,t = wi,t−1 exp

(
− η`(fi,t , yt)

)
I Update (with Wt =

∑
i vi,t)

wi,t = α
Wt
N + (1− α)vi,t
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

Intuition: α encodes a belief on the switching frequency

wi ,t = α
Wt
N + (1− α)vi ,t
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

Details: everything starts from a non–uniform belief over the class
B of all the possible switching strategies σ = (σ1, . . . , σn)

w ′0(σ) =
1
N

(α
N

)s(σ)(
1− α +

α

N

)n−s(σ)

Marginalized weights

w ′0(σ1:t) =
∑

σ′∈B:σ′1:t =σ1:t

w ′0(σ′)

Recursive forumlation
w ′0(σ1) = 1/N

w ′0(σ1:t+1) = w ′0(σ1:t)
(α

N + (1− α)I {σt+1 = σt}
)
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

The value

p =
w ′0(σ1:t+1)

w ′0(σ1:t)
=
α

N + (1− α)I {σt+1 = σt}

is the conditional probability that a random sequence (I1, . . . , In) drawn
from w ′0 has It+1 = σt+1 given that It = σt

Let X = {1, . . . ,N} be the state of a Markov chain M
I P[X1 = i ] = w ′0(i1) = 1/N
I P[Xt+1 = i |Xt = j] = α/N (if i 6= j)
I P[Xt+1 = i |Xt = i ] = 1− α + α/N
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The Fixed-Share Forecaster (cont’d)
The value

p =
w ′0(σ1:t+1)
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I P[Xt+1 = i |Xt = j] = α/N (if i 6= j)
I P[Xt+1 = i |Xt = i ] = 1− α + α/N

⇒ The weights w ′0 encode a joint distribution of a Markov chain M such
that X1 is drawn uniformly at random and Xt+1 is equal to the previous
expert Xt with probability 1− α + α/N and is equal to j 6= Xt with
probability α/N.
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

The value

p =
w ′0(σ1:t+1)

w ′0(σ1:t)
=
α

N + (1− α)I {σt+1 = σt}

is the conditional probability that a random sequence (I1, . . . , In) drawn
from w ′0 has It+1 = σt+1 given that It = σt

Let X = {1, . . . ,N} be the state of a Markov chain M
I P[X1 = i ] = w ′0(i1) = 1/N
I P[Xt+1 = i |Xt = j] = α/N (if i 6= j)
I P[Xt+1 = i |Xt = i ] = 1− α + α/N

⇒ small α corresponds to small weight to switching experts with many
switches
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

At round t, the weight

w ′t(σ) = w ′0(σ) exp
(
η

t∑
s=1

`(fσs ,t , ys)
)

is used to randomized over switching experts which reduces to a
randomization over base expert

w ′i ,t =
∑

σ∈B:σt =i
w ′t(σ)

with w ′i ,t = 1/N.
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

Theorem
The Fixed-Share Forecaster with parameters η, α has a regret
w.r.t. any switching expert σ

Rn(A) ≤ s(σ) + 1
η

log N +
1
η

log 1
(α/N)s(σ)(1− α)n−s(σ)−1 +

η

8 n
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Efficient Forecasters for Large Classes of Experts Tracking the Best Expert

The Fixed-Share Forecaster (cont’d)

Corollary
The Fixed-Share Forecaster with a suitable parameter η and
α = m/(n − 1) has a regret w.r.t. any switching expert σ with
s(σ) ≤ m

Rn(A) ≤
√

8
n

(
(m + 1) log N + (n − 1)H

( m
n − 1

))

Remark: α encodes the frequency of switch and it allows the
algorithm to compete against m ≈ αn switching experts.
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Tree Experts

Instead of switching experts we now consider tree experts.

Let’s consider the discrete binary prediction case Y = {0, 1}.
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)

A binary tree

0

0

1

1
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)

An expert tree

1

0

1

1

0

2

4
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)

We traverse the tree according to the past observations (in
reversed order)

(yt−1, yt−2, . . . , yt−d )

1

0

1

1

0

2

4

See example on the board...
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)

An expert tree E has
I Number of leaves leaves(E )

I Number of nodes ||E ||
I D-size of an expert ||E ||D = ||E || − |{leaves at depthD}|
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)
Inefficient EWA algorithm over experts

I Initial weights

wE ,0 = 2−||E ||D N−|leaves(E)|

I At round t

wE ,t−1 = wE ,0
∏

v∈leaves(E)

wE ,v ,t−1

I Leaf weight

wE ,v ,t =

{
wE ,v ,t−1 exp

(
− η`(fiE (v),t , yt)

)
if v is active

wE ,v ,t−1 otherwise
I Randomize over

pi ,t =

∑
E I {iE (yt) = i}wE ,t−1∑

E ′ wE ′,t−1
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)

Theorem
The randomized EWA(η) over the set of experts of depth D
satisfies for any tree expert E

Rn ≤
||E ||D
η

log 2 +
|leaves(E )|

η
log N +

η

8 n

if η is optimized
Rn ≤

√
n2D−1 log(2N)

Problem: again, the number of experts of D maybe very large and
the number of leaves even larger, so this algorithm is infeasible
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Efficient Forecasters for Large Classes of Experts Tree Experts

Tree Experts (cont’d)

There exists an efficient tree expert forecaster with N(2D+1 − 1)
weights, which is N weights for each node of the complete binary
tree of depth D.

No details here but the algorithm involves a recursive update of
the weights of the nodes.
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Directed Acyclic Graphs
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Directed Acyclic Graphs (cont’d)

A directed acyclic graph is
I set of edges E = {e1, . . . , e|E |}
I set of vertices V
I ⇒ e = (v1, v2)

Paths
I Start vertex u, end vertex v
I Path from u to v is e(1), . . . , e(k) with e(1) = (u, v1),

e(j) = (vj−1, vj)

I Path i ∈ {0, 1}|E |
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Directed Acyclic Graphs (cont’d)

At each round t
I each edge ej has a loss `ej ,t

I the whole graph has yt = `t ∈ [0, 1]|E |

I the loss of a path i is `(i, yt) = i · `t =
∑

j `ej ,tI {ij = 1}

Regret

Rn(A) =
n∑

t=1
E[`(It ,Yt)]−min

i

n∑
t=1

`(it ,Yt)
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Follow the Perturbed Leader

At round t the leader is

argmin
i

i ·
( t−1∑

s=1
`s
)

Let Zt ∈ R|E | be a random variable.
The perturbed leader is

It = argmin
i

i ·
( t−1∑

s=1
`s + Zt

)
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Follow the Perturbed Leader (cont’d)

The perturbed leader is

It = argmin
i

i ·
( t−1∑

s=1
`s + Zt

)
There exist efficient algorithms to find the shortest path in a
directed acyclic graph in linear time.
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Follow the Perturbed Leader (cont’d)

Theorem
Consider the follow-the-perturbed-leader with noise vectors
Zt ∈ [0,∆]|E |. Then with probability 1− δ

Rn ≤ K∆ +
nK |E |

∆
+ K

√
n
2 log 1

δ

with K the length of the longest path from u to v.
By setting ∆ =

√
n|E | we have

Rn ≤ 2K
√

n|E |+ K
√

n/2 log(1/δ)
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Exponentially Weighted Average for Graphs

Infeasible solution: simply list all the possible paths and consider
them as experts
Efficient solution: build the predicted path It by selecting edges
one by one
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Exponentially Weighted Average for Graphs

Edge cumulative loss

Le,t =
t∑

s=1
`e,s

Let Pw the set of paths from vertex w ∈ V to end vertex v , we
define

Gt(w) =
∑
i∈Pw

exp
(
− η

∑
e∈i

Le,t
)
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Exponentially Weighted Average for Graphs

We order the vertices as v1, . . . , v|V | so that

u = v1, v = v|V |
and if i < j then there is no edge between vi and vj (exploiting the
structure of the directed acyclic graph).
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Exponentially Weighted Average for Graphs

Given the ordering, we can computed Gt(w) recursively

Gt(v) = 1

If Gt(vi ) has been calculated for all vi with
i = |V |, |V − 1|, . . . , j + 1, then

Gt(vj) =
∑

w :(vj ,w)∈E
Gt(w) exp

(
− ηL(vj ,w),t)
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Exponentially Weighted Average for Graphs

From the weights on the edge to the (random) path It .
Start from u, then for any k = 1, . . .

I Pick the vertex vIt ,k with probability

P[vIt ,k = vi,k |vIt ,k−1 = vi,k−1, . . . , vIt ,0 = vi,0]

=

{ Gt−1(vi,k )
Gt−1(vi,k−1) if (vi,k−1, vi,j) ∈ E
0 otherwise.
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Efficient Forecasters for Large Classes of Experts Shortest Path Problem

Exponentially Weighted Average for Graphs

Theorem
The efficient EWA achieves a regret

Rn ≤ K
(

log M
η

+
nη
8 +

√
n
2 log 1

δ

)

with probability 1− δ, where M is the total number of paths from
u to v and K is the length of the longest path.

Comparison: the performance is much better than the perturbed
leader (O(

√
n|E |)).
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment

Problem: the bounds displays a nice dependency log N, but what
if the number of experts is infinite?

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 103/140



Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

An example in sequential investment (portfolio selection)
I d stocks
I market vector z ∈ Rd

+

I portfolio allocation a ∈ ∆d (i.e., ai ∈ [0, 1] and
∑d

i=1 ai = 1)
I the capital W evolves as

Wt =
d∑

i=1
at(i)Wt−1︸ ︷︷ ︸

fraction on stock i

zt(i) = Wt−1a>t zt = W0

t∏
s=1

a>s zs
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

The prediction game
I Experts: all the constantly rebalanced portfolios (i.e.,

constant portfolio a over n rounds)
I Expert performance Wn(a) = W0

∏n
t=1 a>zt

I Best expert supa∈∆d Wn(a)

I Performance of A (sequence of portfolios a1, . . . , an):

Competitive wealth ratio: supa Wn(a)

Wn(A)
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Infinite Experts: Sequential Investment (cont’d)

The prediction game
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constant portfolio a over n rounds)
I Expert performance Wn(a) = W0

∏n
t=1 a>zt

I Best expert supa∈∆d Wn(a)

I Performance of A (sequence of portfolios a1, . . . , an):

Log wealth ratio: log
(supa Wn(a)

Wn(A)

)
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

The prediction game
I Experts: all the constantly rebalanced portfolios (i.e.,

constant portfolio a over n rounds)
I Expert performance Wn(a) = W0

∏n
t=1 a>zt

I Best expert supa∈∆d Wn(a)

I Performance of A (sequence of portfolios a1, . . . , an):

Log wealth ratio:
n∑

t=1
− log(a>t zt)− inf

a∈∆d

n∑
t=1
− log(a>zt)
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

The prediction game
I Experts: all the constantly rebalanced portfolios (i.e.,

constant portfolio a over n rounds)
I Expert performance Wn(a) = W0

∏n
t=1 a>zt

I Best expert supa∈∆d Wn(a)

I Performance of A (sequence of portfolios a1, . . . , an):

Regret:
n∑

t=1
`(at , zt)− inf

a∈∆d

n∑
t=1

`(a, zt)
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

Continuous EWA(η)
At each round t, switch to position

at =

∫
a∈∆d

wt(a)

Wt
a da

with

wt(a) = exp
(
− η

t−1∑
s=1

`(a, zs)
)
, Wt =

∫
a

wt(a) da
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

Problem: the portfolio selection

at =

∫
a∈∆d

wt(a)

Wt
a da

is easy to write but how easy is it to compute?

Easy! (or at least not too much complicated...)

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 107/140



Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

Problem: the portfolio selection

at =

∫
a∈∆d

wt(a)

Wt
a da

is easy to write but how easy is it to compute?
Easy! (or at least not too much complicated...)

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 107/140



Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

Remark: notice that

at =

∫
a∈∆d

wt(a)

Wt
a da

is an integration problem with a measure wt(a)/Wt and that

ft(a) : a 7→ wt(a)

Wt
=

1
Wt

exp
(
− η

t−1∑
s=1

`(a, zs)
)

is a log–concave function and ∆d is a convex set

⇒ we can use random walk methods which are particularly efficient
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Infinite Experts: Sequential Investment (cont’d)

A sketch of the algorithm

Input: m, σ
Average over m samples obtained as

I Start from a uniform allocation a0 = (1/d , . . . , 1/d)

I Repeat for T steps
I Choose a dimension j (i.e., a stock) at random
I Choose a value X ∈ {−1, 1} at random

I Compute p1 = f (a)
I Compute p2 = f (a(1), . . . , a(j) + Xσ, . . . , a(d)− Xσ)
I With probability p1/p2 update a(j) = a(j) + σX and

a(d) = a(d)− σX
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Infinite Experts: Sequential Investment (cont’d)

Theorem
If

m ≥ O
(n3

ε2 log dn
δ

)
S ≥ O

( d
σ2 log d

εσ

)
then random walk algorithm performs (1− ε) times as well as the
exact algorithm with probability 1− δ.
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Efficient Forecasters for Large Classes of Experts Infinite Experts

Extension to Infinite Experts

Theorem
Given a convex loss bounded in [0, 1], for any γ > 0, the (exact)
Continuous EWA(η) achieves a regret

Rn ≤
d log 1

γ

η
+

nη
8 + γn

By setting γ = 1/n and η = 2
√

2d log n/n then

Rn ≤ 1 +

√
dn log n

2
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The Betting Problem

Disclaimer
Neither the authors nor the lecturer are responsible for any
inappropriate use of the techniques presented in this course.
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$$ How to Make Money with Online Learning $$

The Betting Problem

The problem: Predict the outcome of a game using the odds
from the bookmakers.
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$$ How to Make Money with Online Learning $$

Glossary

I Bookmaker (bookie): The company organizing the gambling
I Odds: Bookmaker’s view of the chance of a competitor

winning (adjusted to include a profit).
I Stake: The money you bet.
I Overround : Profit margin in the bookmaker’s favor.
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$$ How to Make Money with Online Learning $$

Glossary (cont’d)

Theoretical (in favor) odds
I Example: There are 5 pink marbles, 2 blue marbles, and 8

purple marbles. What are the odds in favor of picking one
blue marble?

Answer: 2/13 (2:13)
I Definition:

If p = 0.2, the odds are a = 0.25, and represent
the stake necessary to win one unit (plus the bet) on a
successful wager when offered fair odds.

I Odds a = 0.25 correspond to fractional odds are 4 to 1 (4:1),
in decimal odds are 5.0.

Source: wikipedia
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Glossary (cont’d)
Theoretical (in favor) odds

I Example: There are 5 pink marbles, 2 blue marbles, and 8
purple marbles. What are the odds in favor of picking one
blue marble?
Answer: 2/13 (2:13)

I Definition:
odd =

prob. in favor
prob. against

If p = 0.2, the odds are a = 0.25, and represent the stake
necessary to win one unit (plus the bet) on a successful wager
when offered fair odds.

I Odds a = 0.25 correspond to fractional odds are 4 to 1 (4:1),
in decimal odds are 5.0.

Source: wikipedia
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Glossary (cont’d)
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Glossary (cont’d)
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$$ How to Make Money with Online Learning $$

Glossary (cont’d)

Theoretical (against) odds

a =
1− p

p

In the previous example: What are the odds against picking one
blue marble? 13 : 2
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Glossary (cont’d)
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$$ How to Make Money with Online Learning $$

Glossary (cont’d)

Gambling odds
I Bookmaker’s odds include a profit margin, the over-round .
I Example: In a 3-horse race, let 50%, 40% and 10% be the

true probabilities (odds 5-5, 6-4 and 9-1). The bookmaker
may increase the values to 60%, 50% and 20% (odds 4-6, 5-5
and 4-1). These values total 130, meaning that the book has
an overround of 30 .
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$$ How to Make Money with Online Learning $$

Glossary (cont’d)

From odds to probabilities:
I K possible outcomes
I K odds a1, . . . , aK
I Probabilities

pk =
1/ak∑K

k′=1 1/ak′
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$$ How to Make Money with Online Learning $$

The Brier’s Game

I Outcome space: possible results
I Decision space: probability distribution
I Set of experts: bookmakers
I Loss function: quadratic loss on the probability distribution
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$$ How to Make Money with Online Learning $$

The Brier’s Game

I Outcome space: Y = {1, . . . ,K}
I Decision space: D = P(Y)

I Set of experts: 1, . . . ,N
I Loss function:

`(y , p̂) =
K∑

k=1
(p̂(k)− δy (k))2
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$$ How to Make Money with Online Learning $$

The Brier’s Game

At each round t
I Expert i predicts a distribution over outcomes pi ,t

I Learner predicts a distribution over outcomes p̂t
I Reality announces the outcome yt
I Learner incurs a loss `(yt , p̂t)
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$$ How to Make Money with Online Learning $$

Strong Aggregating Algorithm

Initialize the weights wi ,0 = 1
I Record the experts’ predictions pi ,t

I Compute

Gt(y) = − log
( N∑

i=1
wi ,t−1 exp(−`(y ,pi ,t))

)
I Solve

∑
y (s − Gt(y))+ = 2 with s ∈ R

I Set p̂t(k) = (s − Gt(k))+/2 for any k ∈ Y
I Predict p̂t and observe yt
I Update wi ,t = wi ,t−1 exp(−`(y ,pi ,t))
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$$ How to Make Money with Online Learning $$

Strong Aggregating Algorithm

A rough explanation
I exp(−`(y ,pi ,t)) is the “loss” suffered by i if the outcome will

be y
I Gt(y) is a mixing function of the the potential losses using

weights ws
I We search for a mapping function Σ which takes G and

returns valid predictions such that

`(y ,Σ(G)) ≤ G(y)
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$$ How to Make Money with Online Learning $$

Strong Aggregating Algorithm

Theorem
The strong aggregating algorithm on the Brier’s game achieves a
cumulative loss

Ln(A) ≤ min
1≤i≤N

Li ,n + log N

Remark: and no algorithm can do better!
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$$ How to Make Money with Online Learning $$

Empirical Results
Available at: http://vovk.net/ICML2008/

Database football
I 8999 matches in English football competitions over 4 years
I Outcomes: {home win, draw, away win}
I 8 Bookmakers (Bet365, Bet&Win, ...)

Database tennis
I 10,087 matches in different tournaments over 4 years
I Outcomes: {player1 win, player2 win}
I 4 Bookmakers (Bet365, Bet&Win, ...)

Pre-processing: from odds to probabilities

p(k) = a(k)−γ

where γ is related to the overround.
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$$ How to Make Money with Online Learning $$

Empirical Results: football
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$$ How to Make Money with Online Learning $$

Empirical Results: tennis

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 127/140



$$ How to Make Money with Online Learning $$

Empirical Results: comparisons

Question: Independently from the theory is the SAA really good
compared to other algorithms?

I Weighted average: the same as SSA but no function G
I Hedge (EWA)
I Weak aggregating
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$$ How to Make Money with Online Learning $$

Empirical Results: comparisons

Football results

Algorithm Maximal Difference Theoretical Bound
Aggregating 1.1562 2.0794

Weighted Average 1.8697 16.6355
Hedge 4.5662 234.1159

Weak Aggregating 2.4755 464.0728
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$$ How to Make Money with Online Learning $$

Empirical Results: comparisons

Tennis results

Algorithm Maximal Difference Theoretical Bound
Aggregating 1.2021 1.3863

Weighted Average 3.0566 11.0904
Hedge 9.0598 237.8904

Weak Aggregating 3.6101 473.0083
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$$ How to Make Money with Online Learning $$

Empirical Results: comparisons

Other observations
I SAA is able to (explicitly) exploit the shape of the loss

function
I Other algorithms are less aware of the loss function
I Experiments (not reported) on other algorithms, show that

non-theoretically guaranteed algorithms do not perform that
poorly but are much less robust
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$$ How to Make Money with Online Learning $$

Discussion

I Is it possible to add side information?
I Is it the minimization of the regret wrt the best expert our

real goal?
I Is it possible to merge model-based prediction and

expert-based prediction?
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Conclusions

Outline

Introduction

Continuous Prediction with Expert Advice: the EWA

Discrete Prediction with Expert Advice: the EWA

Efficient Forecasters for Large Classes of Experts

$$ How to Make Money with Online Learning $$

Conclusions
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Conclusions

Other Online Learning Algorithms

I Follow-the-regularized leader
I The perceptron
I Proximal point algorithm
I Exponentiated gradient algorithms
I Mirror decent
I Passive-agressive algorithm
I ...
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Conclusions

Other Online Learning Settings

I Online learning with partial monitoring
I Label-efficient learning
I Online learning in games
I Online binary classification
I Specific losses
I Contextual learning
I Hybrid stochastic-adversarial models
I ...

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 137/140



Conclusions

Applications of Online Learning

I Stock market prediction (universal portfolio)
I Betting strategies
I Ozone ensamble prediction
I Online email categorization
I Speech-to-text and Music-to-score Alignement
I ...
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Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Conclusions

Things to Remember

I Learning when data are coming in a stream is a very relevant
problem

I Online learning is about algorithms which are robust enough
to working well in any case

I In the expert advice model we can leverage on many experts
of any kind

I The EWA is a very flexible algorithm for both continuous and
discrete prediction

I Theory gives you worst-case guarantees on the algorithm
performance

I Many potential applications and it works

A. LAZARIC – An Introduction to Online Learning April 2-15, 2012 - 139/140



Advanced Topics in Machine Learning

Part II: An Introduction to Online Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr


	Introduction
	The Online Prediction Game
	Binary Sequence Prediction

	Continuous Prediction with Expert Advice: the EWA
	The Continuous Prediction Game
	The Exponentially Weighted Average Forecaster
	Parameter Tuning
	Bounds for Small Losses

	Discrete Prediction with Expert Advice: the EWA
	The Discrete Prediction Game
	A Note on Lower Bounds

	Efficient Forecasters for Large Classes of Experts
	Tracking the Best Expert
	Tree Experts
	Shortest Path Problem
	Infinite Experts

	$$ How to Make Money with Online Learning $$
	Conclusions

